已知菱形ABCD的周長為20,其中一條對角線為8,則另一條對角線長是( 。
A、3B、4C、6D、8
分析:根據(jù)菱形的性質(zhì),知周長可求邊長;要求對角線的長度可先求其一半的長度,根據(jù)勾股定理求解.
解答:精英家教網(wǎng)解:如圖,菱形ABCD中,AC=8.
∵ABCD為菱形,周長為20,AC=8,
∴AB=20÷4=5,AO=4.
∴OB=
52-42
=3,
BD=2BO=6.
故選C.
點評:此題考查了菱形的性質(zhì),屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;
(2)如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,
①已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.
②若點P、Q的運動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點為頂點的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:矩形ABCD中AD>AB,O是對角線的交點,過O任作一直線分別交BC、AD于點M、N(如圖①).
(1)求證:BM=DN;
(2)如圖②,四邊形AMNE是由四邊形CMND沿MN翻折得到的,連接CN,求證:四邊形AMCN是菱形;
(3)在(2)的條件下,如圖③,若AB=4cm,BC=8cm,動點P、Q分別從A、C兩點同時出發(fā),沿△AMB和△CDN各邊勻速運動一周.即點P自A→M→B→A停止,點Q自C→D→N→C停止.在運動過程中,已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•福州)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;
(2)如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,
①已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.
②若點P、Q的運動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點為頂點的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆江蘇省鹽城市阜寧縣東溝中學九年級下學期期中考試數(shù)學試卷(帶解析) 題型:解答題

已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;
(2)如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,
①已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.
②若點P、Q的運動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點為頂點的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(青海西寧卷)數(shù)學 題型:解答題

(2011•福州)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.

(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;

(2)如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,

①已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.

②若點P、Q的運動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點為頂點的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.

 

查看答案和解析>>

同步練習冊答案