【題目】如圖1,平面直角坐標(biāo)系中,直線y=﹣x+3與拋物線y=ax2+x+c相交于A,B兩點,其中點A在x軸上,點B在y軸上.
(1)求拋物線的解析式;
(2)在拋物線上存在一點M,使△MAB是以AB為直角邊的直角三角形,求點M的坐標(biāo);
(3)如圖2,點E為線段AB上一點,BE=2,以BE為腰作等腰Rt△BDE,使它與△AOB在直線AB的同側(cè),∠BED=90°,△BDE沿著BA方向以每秒一個單位的速度運動,當(dāng)點B與A重合時停止運動,設(shè)運動時間為t秒,△BDE與△AOB重疊部分的面積為S,直接寫出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
【答案】
(1)
解:對于直線y=﹣x+3,
當(dāng)y=0時,0=﹣x+3,即x=4,
∴A(4,0),
當(dāng)x=0時,y=3,即B(0,3),
把A與B坐標(biāo)代入y=ax2+x+c中,得:,
解得:,
則拋物線解析式為y=﹣x2+x+3;″
(2)
解:設(shè)M坐標(biāo)為(x,﹣x2+x+3),
①當(dāng)∠MBA=90°時,如圖1,作MN⊥y軸,則有∠MNO=90°,
∴∠NMB+∠MBN=90°,
∵∠MBN+∠ABM+∠ABO=180°,
∴∠MBN+∠ABO=90°,
∴∠NMB=∠ABO,
∵∠MNO=∠BOA,
∴△MNB∽△BOA,
∴=,
即=,
解得:x=或x=0(舍去),
當(dāng)x=時,y=,即M(,);
②當(dāng)∠BAM′=90°時,易知△AM′N′∽△BAO,∴=,
即=,解得x=﹣或4(舍去),當(dāng)x=﹣時,y=﹣,
即M′(﹣,﹣),
則滿足條件M的坐標(biāo)為(,)或(﹣,﹣);
(3)
解:如圖2所示,
當(dāng)D點運動到x軸上時,易知△AD′E′∽△ABO,
∴,∴AE′=,∴EE′=AB﹣BE﹣AE′=5﹣2﹣=,
∴當(dāng)0≤t≤時,S=2;
當(dāng)≤t≤3時,S=﹣t2+t+;
當(dāng)3≤t≤5時,S=t2﹣t+.
【解析】(1)根據(jù)直線解析式,求出A與B的坐標(biāo),代入拋物線解析式求出a與c的值,即可確定出拋物線解析式;
(2)由M在拋物線圖象上,設(shè)出M坐標(biāo),分兩種情況考慮:①當(dāng)∠MBA=90°時;②當(dāng)∠BAM′=90°時,分別求出M坐標(biāo)即可;
(3)根據(jù)t的范圍,分三種情況考慮:當(dāng)0≤t≤時;當(dāng)≤t≤3時;當(dāng)3≤t≤5時,分別確定出S與t的函數(shù)解析式即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點,點D、E分別在AC、BC邊上運動,且保持AD=CE.連接DE、DF、EF.在此運動變化的過程中,下列結(jié)論:
①△DFE是等腰直角三角形;
②四邊形CDFE不可能為正方形;
③四邊形CDFE的面積保持不變;
④△CDE面積的最大值為8.
其中正確的結(jié)論有( )個.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=x﹣3與反比例函數(shù)y=的圖象相交于點A(4,n),與x軸相交于點B.
(1)填空:n的值為___ , k的值為____;
(2)以AB為邊作菱形ABCD,使點C在x軸正半軸上,點D在第一象限,求點D的坐標(biāo);
(3)觀察反比函數(shù)y=的圖象,當(dāng)y≥﹣2時,請直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,點B在線段AE上,點C在線段AD上.
(1)請直接寫出線段BE與線段CD的關(guān)系:;
(2)如圖2,將圖1中的△ABC繞點A順時針旋轉(zhuǎn)角α(0<α<360°),
①(1)中的結(jié)論是否成立?若成立,請利用圖2證明;若不成立,請說明理由;
②當(dāng)AC=時,探究在△ABC旋轉(zhuǎn)的過程中,是否存在這樣的角α,使以A、B、C、D四點為頂點的四邊形是平行四邊形?若存在,請直接寫出角α的度數(shù);若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館準(zhǔn)備購進(jìn)一批換氣扇,從電器商場了解到:一臺A型換氣扇和三臺B型換氣扇共需275元;三臺A型換氣扇和二臺B型換氣扇共需300元.
(1)求一臺A型換氣扇和一臺B型換氣扇的售價各是多少元;
(2)若該賓館準(zhǔn)備同時購進(jìn)這兩種型號的換氣扇共40臺并且A型換氣扇的數(shù)量不多于B型換氣扇數(shù)量的3倍,請設(shè)計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面積等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB為10cm,弦BC為5cm,D、E分別是∠ACB的平分線與⊙O,AB的交點,P為AB延長線上一點,且PC=PE.
(1)求AC、AD的長;
(2)試判斷直線PC與⊙O的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市計劃經(jīng)銷一些特產(chǎn),經(jīng)銷前,圍繞“A:綏中白梨,B:虹螺峴干豆腐,C:綏中六股河鴨蛋,D:興城紅崖子花生”四種特產(chǎn),在全市范圍內(nèi)隨機(jī)抽取了部分市民進(jìn)行問卷調(diào)查:“我最喜歡的特產(chǎn)是什么?”(必選且只選一種).現(xiàn)將調(diào)查結(jié)果整理后,繪制成如圖所示的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖.
(1)請補(bǔ)全扇形統(tǒng)計圖和條形統(tǒng)計圖;
(2)若全市有280萬市民,估計全市最喜歡“虹螺峴干豆腐”的市民約有多少萬人?
(3)在一個不透明的口袋中有四個分別寫上四種特產(chǎn)標(biāo)記A、B、C、D的小球(除標(biāo)記外完全相同),隨機(jī)摸出一個小球然后放回,混合搖勻后,再隨機(jī)摸出一個小球,則兩次都摸到“A”的概率為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C,D在⊙O上,且AD平分∠CAB,過點D作AC的垂線,與AC的延長線相交于點E,與AB的延長線相交于點F.
(1)求證:EF與⊙O相切;
(2)若AB=6,AD=,求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com