已知如圖,拋物線y=x2+(k2+1)x+k+1的對(duì)稱軸是直線x=-1,且頂點(diǎn)在x軸上方.設(shè)M是直線x=-1左側(cè)拋物線上的一動(dòng)點(diǎn),過(guò)點(diǎn)M作x軸的垂線MG,垂足為G,過(guò)點(diǎn)M作直線x=-1的垂線MN,垂足為N,直線x=-1與x軸的交于H點(diǎn),若M點(diǎn)的橫坐標(biāo)為x,矩形MNHG的周長(zhǎng)為l.
(1)求出k的值;
(2)寫(xiě)出l關(guān)于x的函數(shù)解析式;
(3)是否存在點(diǎn)M,使矩形MNHG的周長(zhǎng)最?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.
分析:(1)根據(jù)對(duì)稱軸公式得到關(guān)于k的方程,解方程即可求解;
(2)先用x表示出M點(diǎn)的坐標(biāo),根據(jù)兩點(diǎn)之間的距離公式得到MG,GH;再根據(jù)矩形的周長(zhǎng)公式即可得到l關(guān)于x的函數(shù)解析式;
(3)先將l關(guān)于x的函數(shù)解析式配方,得到x的值,代入拋物線解析式即可得到使矩形MNHG的周長(zhǎng)最小時(shí)點(diǎn)M的坐標(biāo).
解答:解:(1)對(duì)稱軸:x=-
b
2a
=-
k2+1
2
=-1,
則k2+1=2,
解得k=±1,
∵拋物線與y軸的交點(diǎn)在x軸上方,
∴k+1>0,
則k=1;

(2)由(1)得拋物線解析式為:y=x2+2x+2
∵M(jìn)點(diǎn)的橫坐標(biāo)為x,M點(diǎn)在拋物線上,
∴M點(diǎn)的縱坐標(biāo)為x2+2x+2,
MG=x2+2x+2,
又∵對(duì)稱軸是直線x=-1
∴GH=|x|-|-1|
由題知,M是直線x=-1左側(cè),
∴GH=-x-1,
∴矩形MNHG的周長(zhǎng)為l=2(GH+MG)=2(-x-1+x2+2x+2)=2(x2+x+1);

(3)矩形MNHG的周長(zhǎng)為l=2(x2+x+
1
4
-
1
4
+1)=2[(x+
1
2
2+
3
4
]=2(x+
1
2
2+
3
2
,
當(dāng)x=-
1
2
時(shí),矩形MNHG的周長(zhǎng)為l有最小值
3
2
,此時(shí)點(diǎn)M的坐標(biāo)為(-
1
2
,(-
1
2
2+2×(-
1
2
)+2),即(-
1
2
,1
1
4
).
點(diǎn)評(píng):本題考查的是二次函數(shù)的綜合題,涉及的知識(shí)點(diǎn)有:拋物線的對(duì)稱軸公式,兩點(diǎn)之間的距離公式,矩形的周長(zhǎng)公式,配方法求最值問(wèn)題,綜合性較強(qiáng),難度中等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知如圖,拋物線y=ax2+bx+c過(guò)點(diǎn)A(-1,0),且經(jīng)過(guò)直線y=x-3與坐標(biāo)軸的兩個(gè)交點(diǎn)B、C.
(1)求拋物線的解析式;
(2)求拋物線的頂點(diǎn)坐標(biāo);
(3)若點(diǎn)M在第四象限內(nèi)的拋物線上,且OM⊥BC,垂足為D,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知如圖,拋物線y=ax2+bx-a的圖象與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左邊,頂點(diǎn)坐標(biāo)為C(0,-4),直精英家教網(wǎng)線x=m(m>1)與x軸交于點(diǎn)D.
(1)求拋物線的解析式;
(2)在直線x=m(m>1)上有一點(diǎn)P(點(diǎn)P在第一象限),使得以P、D、B為頂點(diǎn)的三角形與以B、C、O為頂點(diǎn)的三角形相似,求P點(diǎn)坐標(biāo)(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,試問(wèn):拋物線y=ax2+bx-a是否存在一點(diǎn)Q,使得四邊形ABPQ為平行四邊形?如果存在這樣的點(diǎn)Q,請(qǐng)求出m的值;如果不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知如圖,拋物線y=x2-x-1與y軸交于C點(diǎn),以原點(diǎn)O為圓心,以O(shè)C為半徑作⊙O,交x軸于A、B兩點(diǎn),交y軸于另一點(diǎn)D.設(shè)點(diǎn)P為拋物線y=x2-x-1上的一點(diǎn),作PM⊥x軸于點(diǎn)M,求使△PMB∽△ADB時(shí)的P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(-1,0)和點(diǎn)B,化簡(jiǎn)
(a+c)2
+
(c-b)2
的結(jié)果為①c,②b,③b-a,④a-b+2c,其中正確的有( 。
A、一個(gè)B、兩個(gè)C、三個(gè)D、四個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知如圖,拋物線y=ax2+bx+c與x軸相交于B(1,0)、C(4,0)兩點(diǎn),與y軸的正半軸相交于A點(diǎn),過(guò)A、B、C三點(diǎn)的⊙P與y軸相切于點(diǎn)A.
(1)請(qǐng)求出點(diǎn)A坐標(biāo)和⊙P的半徑;
(2)請(qǐng)確定拋物線的解析式;
(3)M為y軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),直線MB交⊙P于點(diǎn)D.若△AOB與以A、B、D為頂點(diǎn)的三角形相似,求MB•MD的值.(先畫(huà)出符合題意的示意圖再求解).

查看答案和解析>>

同步練習(xí)冊(cè)答案