【題目】課前預(yù)習(xí)是學(xué)習(xí)數(shù)學(xué)的重要環(huán)節(jié),為了了解所教班級學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,王老師對本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類,A:很好;B:較好;C:一般;D:較差.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)王老師一共調(diào)查了多少名同學(xué)?
(2)C類女生有名,D類男生有名,將上面條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,王老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

【答案】
(1)解:(6+4)÷50%=20.

所以王老師一共調(diào)查了20名學(xué)生.


(2)3;1
(3)解:由題意畫樹形圖如下:

從樹形圖看出,所有可能出現(xiàn)的結(jié)果共有6種,且每種結(jié)果出現(xiàn)的可能性相等,所選

兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的結(jié)果共有3種.

所以P(所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué))= =


【解析】(2)C類學(xué)生人數(shù):20×25%=5(名)C類女生人數(shù):5﹣2=3(名), D類學(xué)生占的百分比:1﹣15%﹣50%﹣25%=10%,D類學(xué)生人數(shù):20×10%=2(名),
D類男生人數(shù):2﹣1=1(名),故C類女生有3名,D類男生有1名;補(bǔ)充條形統(tǒng)計(jì)圖

(1)根據(jù)B類有6+4=10人,所占的比例是50%,據(jù)此即可求得總?cè)藬?shù);(2)利用(1)中求得的總?cè)藬?shù)乘以對應(yīng)的比例即可求得C類的人數(shù),然后求得C類中女生人數(shù),同理求得D類男生的人數(shù);(3)利用列舉法即可表示出各種情況,然后利用概率公式即可求解.
【考點(diǎn)精析】本題主要考查了扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖的相關(guān)知識點(diǎn),需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形AOCB的兩邊OA、OC分別在x軸和y軸上,且OA=2,OC=1.在第二象限內(nèi),將矩形AOCB以原點(diǎn)O為位似中心放大為原來的 倍,得到矩形A1OC1B1 , 再將矩形A1OC1B1以原點(diǎn)O為位似中心放大 倍,得到矩形A2OC2B2…,以此類推,得到的矩形AnOCnBn的對角線交點(diǎn)的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計(jì)算:|﹣ |﹣ +20170
(2)解方程: =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=x2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,直線y=x﹣3經(jīng)過B、C兩點(diǎn).

(1)求拋物線的解析式;
(2)過點(diǎn)C作直線CD⊥y軸交拋物線于另一點(diǎn)D,點(diǎn)P是直線CD下方拋物線上的一個(gè)動(dòng)點(diǎn),且在拋物線對稱軸的右側(cè),過點(diǎn)P作PE⊥x軸于點(diǎn)E,PE交CD于點(diǎn)F,交BC于點(diǎn)M,連接AC,過點(diǎn)M作MN⊥AC于點(diǎn)N,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段MN的長為d,求d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,連接PC,過點(diǎn)B作BQ⊥PC于點(diǎn)Q(點(diǎn)Q在線段PC上),BQ交CD于點(diǎn)T,連接OQ交CD于點(diǎn)S,當(dāng)ST=TD時(shí),求線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2+x的圖象,如圖所示

(1)根據(jù)方程的根與函數(shù)圖象之間的關(guān)系,將方程x2+x=1的根在圖上近似地表示出來(描點(diǎn)),并觀察圖象,寫出方程x2+x=1的根(精確到0.1).
(2)在同一直角坐標(biāo)系中畫出一次函數(shù)y= x+ 的圖象,觀察圖象寫出自變量x取值在什么范圍時(shí),一次函數(shù)的值小于二次函數(shù)的值.
(3)如圖,點(diǎn)P是坐標(biāo)平面上的一點(diǎn),并在網(wǎng)格的格點(diǎn)上,請選擇一種適當(dāng)?shù)钠揭品椒,使平移后二次函?shù)圖象的頂點(diǎn)落在P點(diǎn)上,寫出平移后二次函數(shù)圖象的函數(shù)表達(dá)式,并判斷點(diǎn)P是否在函數(shù)y= x+ 的圖象上,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形OABC中,AB∥OC,BC⊥x軸于C,A(1,﹣1),B(3,﹣1),動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以2個(gè)單位/秒的速度運(yùn)動(dòng).過P作PQ⊥OA于Q.設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒(0<t<2),△OPQ與四邊形OABC重疊的面積為S.

(1)求經(jīng)過O、A、B三點(diǎn)的拋物線的解析式并確定頂點(diǎn)M的坐標(biāo);
(2)用含t的代數(shù)式表示P、Q兩點(diǎn)的坐標(biāo);
(3)將△OPQ繞P點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點(diǎn)O或Q落在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由;
(4)求S與t的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,E為AD邊的中點(diǎn),把△ABE沿BE翻折,得到△FBE,連接DF并延長交BC于G.
(1)求證:四邊形BEDG為平行四邊形.
(2)若BE=AD=10,且ABCD的面積等于60,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=2 ,以點(diǎn)C為圓心,CB的長為半徑畫弧,與AB邊交于點(diǎn)D,將 繞點(diǎn)D旋轉(zhuǎn)180°后點(diǎn)B與點(diǎn)A恰好重合,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y= 的圖象交于點(diǎn)P,P在第一象限,PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B,一次函數(shù)的圖象分別交x軸、y軸于點(diǎn)C、D,且SPBD=4, =
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象直接寫出當(dāng)x>0時(shí),一次函數(shù)的值大于反比例函數(shù)值的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案