【題目】如圖,等邊三角形的邊長為4,點(diǎn)的中心,.繞點(diǎn)旋轉(zhuǎn),分別交線段兩點(diǎn),連接,給出下列四個(gè)結(jié)論:;;③四邊形的面積始終等于;④△周長的最小值為6,上述結(jié)論中正確的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

連接BO,CO,可以證明OBD≌△OCE,得到BD=CE,OD=OE,從而判斷①正確;

通過特殊位置,當(dāng)DB重合時(shí)EC重合,可判斷BDE的面積與ODE的面積的大小從而判斷②錯(cuò)誤;

OBD≌△OCE,得到四邊形ODBE的面積=△OBC的面積,從而判斷③正確

DDIBCI.設(shè)BD=x,BI=,DI=BD=EC,BC=4,得到BE=4x,IE= .在RtDIE,DE== =,△BDE的周長=BD+BE+DE= 4+DE當(dāng)DE最小時(shí),△BDE的周長最小,從而判斷出④正確.

連接BO,CO,OOHBCH

O為△ABC的中心,∴BO=CO,∠DBO=∠OBC=∠OCB=30°,∠BOC=120°.

∵∠DOE=120°,∴∠DOB=∠COE在△OBD和△OCE中,∵DOB=∠COE,OB=OC,∠DBO=∠ECO,∴△OBD≌△OCE,∴BD=CE,OD=OE故①正確;

當(dāng)DB重合時(shí),EC重合,此時(shí)△BDE的面積=0,△ODE的面積>0,兩者不相等,故②錯(cuò)誤

O為中心OHBC,∴BH=HC=2

∵∠OBH=30°,∴OH=BH=,∴△OBC的面積==

∵△OBD≌△OCE,∴四邊形ODBE的面積=△OBC的面積=,故③正確;

DDIBCI設(shè)BD=xBI=,DI=

BD=EC,BC=4,∴BE=4x,IE=BE-BI=.在RtDIE,DE== = =當(dāng)x=2時(shí),DE的值最小為2,△BDE的周長=BD+BE+DE=BE+EC+DE=BC+DE=4+DE,當(dāng)DE最小時(shí),△BDE的周長最小,∴△BDE的周長的最小值=4+2=6故④正確

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩名同學(xué)在同一個(gè)學(xué)校上學(xué),B同學(xué)上學(xué)的路上經(jīng)過A同學(xué)家。A同學(xué)步行,B同學(xué)騎自行車,某天,A,B兩名同學(xué)同時(shí)從家出發(fā)到學(xué)校,如圖,A表示A同學(xué)離B同學(xué)家的路程A(m)與行走時(shí)間(min)之間的函數(shù)關(guān)系圖象,B表示B同學(xué)離家的路程B(m)與行走時(shí)間(min)之間的函數(shù)關(guān)系圖象.

(1)A,B兩名同學(xué)的家相距________m.

(2)B同學(xué)走了一段路后,自行車發(fā)生故障,進(jìn)行修理,修理自行車所用的時(shí)間是 _____min.

(3)B同學(xué)出發(fā)后______min與A同學(xué)相遇.

(4)求出A同學(xué)離B同學(xué)家的路程A與時(shí)間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三個(gè)頂點(diǎn)的坐標(biāo)分別為,,

1)請畫出關(guān)于軸對稱后得到的;

2)直接寫出點(diǎn),點(diǎn),點(diǎn)的坐標(biāo);

3)在軸上尋找一個(gè)點(diǎn),使的周長最小,并直接寫出的周長的最小值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)批發(fā)商銷售成本為20/千克的某產(chǎn)品,根據(jù)物價(jià)部門規(guī)定:該產(chǎn)品每千克售價(jià)不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價(jià)x(元/千克)滿足一次函數(shù)關(guān)系,對應(yīng)關(guān)系如下表:

售價(jià)x(元/千克)


50

60

70

80


銷售量y(千克)


100

90

80

70


1)求yx的函數(shù)關(guān)系式;

2)該批發(fā)商若想獲得4000元的利潤,應(yīng)將售價(jià)定為多少元?

3)該產(chǎn)品每千克售價(jià)為多少元時(shí),批發(fā)商獲得的利潤w(元)最大?此時(shí)的最大利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】形如:的函數(shù)叫二次函數(shù),它的圖象是一條拋物線.類比一元一次方程的解可以看成兩條直線的交點(diǎn)的橫坐標(biāo);則一元二次方程的解可以看成拋物線與直線軸)的交點(diǎn)的橫坐標(biāo);也可以看成是拋物線與直線________的交點(diǎn)的橫坐標(biāo);也可以看成是拋物線________與直線的交點(diǎn)的橫坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】滿足下列條件的△ABC不是直角三角形的是(  )

A.A:∠B:∠C235B.A:∠B:∠C345

C.A﹣∠B=∠CD.BC3,AC4AB5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別是BC邊,CD邊的中點(diǎn),AE、AF分別交BD于點(diǎn)G,H,設(shè)△AGH的面積為S1,平行四邊形ABCD的面積為S2,則S1:S2的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2﹣(m+1)x+m

(1)求證:拋物線與x軸一定有交點(diǎn);

(2)若拋物線與x軸交于A(x1,0),B(x2,0)兩點(diǎn),x1<0<x2,且,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)了統(tǒng)計(jì)知識(shí)后,數(shù)學(xué)老師請數(shù)學(xué)興趣小組的同學(xué)就本班同學(xué)的上學(xué)方式進(jìn)行了一次調(diào)查統(tǒng)計(jì).如圖甲乙是數(shù)學(xué)興趣小組的同學(xué)們通過手機(jī)和整理數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖.

請你根據(jù)圖中提供的信息,解答一下的問題:

1)在扇形統(tǒng)計(jì)圖中,計(jì)算出步行部分所應(yīng)對的圓心角的度數(shù).

2)請問該班共有多少名學(xué)生?

3)在圖中將表示乘車的部分補(bǔ)充完整.

查看答案和解析>>

同步練習(xí)冊答案