【題目】為了推動“龍江經(jīng)濟帶”建設,我省某蔬菜企業(yè)決定通過加大種植面積、增加種植種類,促進經(jīng)濟發(fā)展.2017年春,預計種植西紅柿、馬鈴薯、青椒共100公頃(三種蔬菜的種植面積均為整數(shù)),青椒的種植面積是西紅柿種植面積的2倍,經(jīng)預算,種植西紅柿的利潤可達1萬元/公頃,青椒1.5萬元/公頃,馬鈴薯2萬元/公頃,設種植西紅柿x公頃,總利潤為y萬元.
(1)求總利潤y(萬元)與種植西紅柿的面積x(公頃)之間的關系式.
(2)若預計總利潤不低于180萬元,西紅柿的種植面積不低于8公頃,有多少種種植方案?
(3)在(2)的前提下,該企業(yè)決定投資不超過獲得最大利潤的 在冬季同時建造A、B兩種類型的溫室大棚,開辟新的經(jīng)濟增長點,經(jīng)測算,投資A種類型的大棚5萬元/個,B種類型的大棚8萬元/個,請直接寫出有哪幾種建造方案?

【答案】
(1)解:由題意y=x+1.5×2x+2(100﹣3x)=﹣2x+200
(2)解:由題意﹣2x+200≥180,

解得x≤10,

∵x≥8,

∴8≤x≤10.

∵x為整數(shù),

∴x=8,9,10.

∴有3種種植方案,

方案一:種植西紅柿8公頃、馬鈴薯76公頃、青椒16公頃.

方案二:種植西紅柿9公頃、馬鈴薯73公頃、青椒18公頃.

方案三:種植西紅柿10公頃、馬鈴薯70公頃、青椒20公頃


(3)解:∵y=﹣2x+200,

﹣2<0,

∴x=8時,利潤最大,最大利潤為184萬元.

設投資A種類型的大棚a個,B種類型的大棚b個,

由題意5a+8b≤ ×184,

∴5a+8b≤23,

∴a=1,b=1或2,

a=2,b=1,

a=3,b=1,

∴可以投資A種類型的大棚1個,B種類型的大棚1個,

或投資A種類型的大棚1個,B種類型的大棚2個,

或投資A種類型的大棚2個,B種類型的大棚1個,

或投資A種類型的大棚3個,B種類型的大棚1個


【解析】(1)總利潤=三種蔬菜利潤的總和,用x 的代數(shù)式分別表示三種利潤即可;(2)由“總利潤不低于180萬元“可列不等式﹣2x+200≥180,取正整數(shù)解三個,就有三種方案;(3)由y=﹣2x+200(8≤x≤10),-2<0,y隨x的增大而減小,故x=8時y最大=184萬元,由題意列出不等式5a+8b≤ ×184,取整數(shù)解即可.
【考點精析】關于本題考查的一元一次不等式組的應用,需要了解1、審:分析題意,找出不等關系;2、設:設未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗:從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知AB兩地相距4千米,上午800,甲從A地出發(fā)步行到B地,820乙從B地出發(fā)騎自行車到A地,甲、乙兩人離A地的距離(千米)與甲所用的時間()之間的關系如圖所示.由圖中的信息知,乙到達A地的時刻為(  )

A. 830B. 835C. 840D. 845

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長是 cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,所有小正方形的邊長都為1,A、B、C都在格點上.

1)過點C畫直線AB的平行線(不寫畫法,下同);

2)過點A畫直線BC的垂線,并注明垂足為G;過點A畫直線AB的垂線,交BC于點H

3)線段_____的長度是點A到直線BC的距離;

4)線段AG、AH的大小關系為AG_____AH.(填“>”或“<”或“=”),理由________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2+3x+ =0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)若m為符合條件的最大整數(shù),求此時方程的根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABD是以BD為斜邊的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD=60°,DC中點為E,AD與BE的延長線交于點F,則∠AFB的度數(shù)為( )

A.30°
B.15°
C.45°
D.25°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一條東西走向的河流,在河流對岸有一點A,小明在岸邊點B處測得點A在點B的北偏東30°方向上,小明沿河岸向東走80m后到達點C,測得點A在點C的北偏西60°方向上,則點A到河岸BC的距離為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以BC為底邊的等腰△ABC,點D,E,G分別在BC,AB,AC上,且EG∥BC,DE∥AC,延長GE至點F,使得BE=BF.

(1)求證:四邊形BDEF為平行四邊形;
(2)當∠C=45°,BD=2時,求D,F(xiàn)兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一條直線上從左往右依次有A、B、CD四個點.

1)如果線段AC、BC、BD的長分別為3a-ba+b、4a-2b,試求A、D兩點間的距離;

2)如果將這條直線看作是以點C為原點的數(shù)軸(向右為正方向).

①直接寫出數(shù)軸上與點B距離為a+2b的點所表示的數(shù)______;

②設線段BD上一動點P所表示的數(shù)為x,求|x+a+b|+|x-3a+3b|的值(用含a、b的代數(shù)表示);

③線段BD上有兩個動點PM,點P所表示的數(shù)為x,點M所表示的數(shù)為y,直接寫出式子|x-y|+|x+a+b|+|x-y-6a+4b|的最小值______(用含a、b的代數(shù)表示).

查看答案和解析>>

同步練習冊答案