【題目】某公司銷售一種進(jìn)價(jià)為20元/個(gè)的計(jì)算器,其銷售量y(萬個(gè))與銷售價(jià)格x(元/個(gè))的變化如下表:
價(jià)格x(元/個(gè)) | … | 30 | 40 | 50 | 60 | … |
銷售量y(萬個(gè)) | … | 5 | 4 | 3 | 2 | … |
同時(shí),銷售過程中的其他開支(不含進(jìn)價(jià))總計(jì)40萬元.
(1)觀察并分析表中的y與x之間的對(duì)應(yīng)關(guān)系,用所學(xué)過的一次函數(shù),反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí)寫出y(萬個(gè))與x(元/個(gè))的函數(shù)解析式.
(2)求出該公司銷售這種計(jì)算器的凈得利潤z(萬元)與銷售價(jià)格x(元/個(gè))的函數(shù)解析式,銷售價(jià)格定為多少元時(shí)凈得利潤最大,最大值是多少?
(3)該公司要求凈得利潤不能低于40萬元,請(qǐng)寫出銷售價(jià)格x(元/個(gè))的取值范圍,若還需考慮銷售量盡可能大,銷售價(jià)格應(yīng)定為多少元?
【答案】(1) y=x+8
(2) z=x2+10x﹣200,銷售價(jià)格定為50元/個(gè)時(shí)凈得利潤最大,最大值是50萬元
(3)40≤x≤60;銷售價(jià)格應(yīng)定為40元/個(gè)
【解析】
(1)根據(jù)數(shù)據(jù)得出y與x是一次函數(shù)關(guān)系,進(jìn)而利用待定系數(shù)法求一次函數(shù)解析式.
(2)根據(jù)z=(x﹣20)y﹣40得出z與x的函數(shù)關(guān)系式,應(yīng)用二次函數(shù)最值原理求解即可.
(3)首先求出40=(x﹣50)2+50時(shí)x的值,從而二次函數(shù)的性質(zhì)根據(jù)得出x(元/個(gè))的取值范圍,結(jié)合一次函數(shù)的性質(zhì)即可求得結(jié)果.
解:(1)根據(jù)表格中數(shù)據(jù)可得出:y與x是一次函數(shù)關(guān)系,設(shè)解析式為:y=ax+b,
則,解得:.
∴函數(shù)解析式為:y=x+8.
(2)根據(jù)題意得:
z=(x﹣20)y﹣40=(x﹣20)(x+8)﹣40=x2+10x﹣200=(x2﹣100x)﹣200
=[(x﹣50)2﹣2500]﹣200=(x﹣50)2+50,
∵<0,∴x=50,z最大=50.
∴該公司銷售這種計(jì)算器的凈得利潤z與銷售價(jià)格x的函數(shù)解析式為z=x2+10x﹣200,銷售價(jià)格定為50元/個(gè)時(shí)凈得利潤最大,最大值是50萬元.
(3)當(dāng)公司要求凈得利潤為40萬元時(shí),即(x﹣50)2+50=40,解得:x1=40,x2=60.
作函數(shù)圖象的草圖,
通過觀察函數(shù)y=(x﹣50)2+50的圖象,可知按照公司要求使凈得利潤不低于40萬元,則銷售價(jià)格的取值范圍為:40≤x≤60.
而y與x的函數(shù)關(guān)系式為:y=x+8,y隨x的增大而減少,
∴若還需考慮銷售量盡可能大,銷售價(jià)格應(yīng)定為40元/個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,點(diǎn)D是BC上一點(diǎn),∠ADE=∠B,
(1)求證:△ABD~△DCE;
(2)點(diǎn)F在AD上,且=,求證:EF∥CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=(a2+1)x2+bx+c經(jīng)過點(diǎn)A(﹣3,t)、B(4,t)兩點(diǎn),則不等式(a2+1)(x-2)2+bx<2b-c+t的解集是_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形 ABCD 中,M,N,P,Q 分別為邊 AB,BC,CD,DA 上的點(diǎn)(不與端點(diǎn)重合).對(duì)于任意矩形 ABCD,下面四個(gè)結(jié)論中:①存在無數(shù)個(gè)四邊形 MNPQ 是平行四邊形;②存在無數(shù)個(gè)四邊形 MNPQ 是矩形;③存在無數(shù)個(gè)四邊形 MNPQ 是菱形;④不存在四邊形 MNPQ 是正方形.所有正確結(jié)論的序號(hào)是_________________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中 xOy 中,對(duì)于⊙C及⊙C內(nèi)一點(diǎn) P,給出如下定義:若存在過點(diǎn) P 的直線 l,使得它與⊙C 相交所截得的弦長為,則稱點(diǎn) P 為⊙C的“k-近內(nèi)點(diǎn)”.
(1)已知⊙O的半徑為 4,
①在點(diǎn)中,⊙O的“4-近內(nèi)點(diǎn)”是______________;
②點(diǎn) P 在直線y=x上,若點(diǎn) P 為⊙O的“4-近內(nèi)點(diǎn)”,則點(diǎn) P 的縱坐標(biāo)y的取值范圍是____________;
(2)⊙C的圓心為(-1,0),半徑為 3,直線x 軸,y 軸分別交于 M,N,若線段 MN 上存在⊙C的 “2 -近內(nèi)點(diǎn)”,則 b 的取值范圍是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,CA=CB,AB=,CD⊥AB于點(diǎn)D,CD=5,點(diǎn)O和點(diǎn)E在線段CD上,ED=1,點(diǎn)P在邊AB上,以E為圓心,EP為半徑的圓與AB邊的另一個(gè)交點(diǎn)為點(diǎn)Q(點(diǎn)P在點(diǎn)Q的左側(cè)),以O為圓心,OC為半徑的圓O恰好經(jīng)過P、Q兩點(diǎn),聯(lián)結(jié)CP,設(shè)線段AP的長度為x.
(1)當(dāng)圓E恰好經(jīng)過點(diǎn)O時(shí),求圓E的半徑;
(2)聯(lián)結(jié)CQ,設(shè)∠PCQ的正切值為y,求y與x的函數(shù)關(guān)系式及定義域;
(3)若∠PED=3∠PCE,求S△PCQ的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BCD=∠D=90°,E是邊AB的中點(diǎn).已知AD=1,AB=2.
(1)設(shè)BC=x,CD=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(2)當(dāng)∠B=70°時(shí),求∠AEC的度數(shù);
(3)當(dāng)△ACE為直角三角形時(shí),求邊BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的直角坐標(biāo)系中,已知點(diǎn)A(1,0)、B(0,﹣2),將線段AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°至AC,若拋物線y=﹣x2+bx+2經(jīng)過點(diǎn)C.
(1)求拋物線的解析式;
(2)如圖,將拋物線平移,當(dāng)頂點(diǎn)至原點(diǎn)時(shí),過Q(0,﹣2)作不平行于x軸的直線交拋物線于E、F兩點(diǎn),問在y軸的正半軸上是否存在一點(diǎn)P,使△PEF的內(nèi)心在y軸上?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
(3)在拋物線上是否存在一點(diǎn)M,使得以M為圓心,以為半徑的圓與直線BC相切?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:拋物線交x軸于A,C兩點(diǎn),交y軸于點(diǎn)B,且OB=2CO.
(1)求二次函數(shù)解析式;
(2)在二次函數(shù)圖象位于x軸上方部分有兩個(gè)動(dòng)點(diǎn)M、N,且點(diǎn)N在點(diǎn)M的左側(cè),過M、N作x軸的垂線交x軸于點(diǎn)G、H兩點(diǎn),當(dāng)四邊形MNHG為矩形時(shí),求該矩形周長的最大值;
(3) 拋物線對(duì)稱軸上是否存在點(diǎn)P,使得△ABP為直角三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com