【題目】如圖,在△ABC中,BC=6EF分別是AB,AC的中點,動點P在射線EF上,BPCE于點D,∠CBP的平分線交CE于點Q,當(dāng)CQ=QE時,EPBP的值為( ).

A.6B.9C.12D.18

【答案】A

【解析】

延長BQ交射線EFM,根據(jù)三角形的中位線平行于第三邊可得EFBC,根據(jù)兩直線平行,內(nèi)錯角相等可得∠M=∠CBM,再根據(jù)角平分線的定義可得∠PBM=∠CBM,從而得到∠M=∠PBM,根據(jù)等角對等邊可得BPPM,求出EPBPEM,再證明MEQBCQ全等,利用全等三角形對應(yīng)邊相等求解即可.

解:如圖,延長BQ交射線EFM,
E、F分別是AB、AC的中點,
EFBC
∴∠M=∠CBM,
BQ是∠CBP的平分線,
∴∠PBM=∠CBM
∴∠M=∠PBM,
BPPM
EPBPEPPMEM,
CQ=QE,∠M=∠CBM,∠MQE=∠BQC

MEQBCQAAS),
EMBC6,即EPBP6
故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,EBC中點連接AE,DF⊥AE于點F,連接CF,F(xiàn)G⊥CFAD于點G,下列結(jié)論:①CF=CD;②GAD中點;③△DCF∽△AGF;④,其中結(jié)論正確的個數(shù)有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在3×3正方形方格中,有3個小正方形涂成了黑色,所形成的圖案如圖所示,圖中每塊小正方形除顏色外完全相同.

1)一個小球在這個正方形方格上自由滾動,那么小球停在黑色小正方形的概率是多少?

2)現(xiàn)將方格內(nèi)空白的小正方形(A、BC、DE、F)中任取2個涂黑,得到新圖案,請用列表或畫樹狀圖的方法求新圖案是中心對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,橫坐標(biāo)為a的點A在反比例函數(shù)y1(x0)的圖象上,點B與點A關(guān)于原點O對稱,一次函數(shù)y2mx+n的圖象經(jīng)過點B.

(1)設(shè)a2,點C(4,2)在函數(shù)y1y2的圖象上.分別求函數(shù)y1,y2的表達式.

(2)如圖,設(shè)函數(shù)y1,y2的圖象相交于點C,點C的橫坐標(biāo)為3a,△ABC的面積為16,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+2k1x+k20有兩個不等實根x1,x2,

1)求實數(shù)k的取值范圍;

2)若方程兩實根x1x2滿足x1+x2+x1x210,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=mx2-16mx+48m(m0)x軸交于AB兩點(B在點A左側(cè)),與y軸交于點C,點D是拋物線上的一個動點,且位于第四象限,連接OD、BD、ACAD,延長ADy軸于點E.

(1)若△OAC為等腰直角三角形,求m的值.

(2)若對任意m0,CE兩點總關(guān)于原點對稱,求點D的坐標(biāo)(用含m的式子表示).

(3)當(dāng)點D運動到某一位置時,恰好使得∠ODB=OAD,且點D為線段AE的中點,此時對于該拋物線上任意一點P(x0,y0)總有n≥4my0212y0-50成立,求實數(shù)n的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綠色生態(tài)農(nóng)場生產(chǎn)并銷售某種有機產(chǎn)品,假設(shè)生產(chǎn)出的產(chǎn)品能全部售出.如圖,線段EF、折線ABCD分別表示該有機產(chǎn)品每千克的銷售價y1(元)、生產(chǎn)成本y2(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系.

(1)求該產(chǎn)品銷售價y1(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系式;

(2)直接寫出生產(chǎn)成本y2(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系式;

(3)當(dāng)產(chǎn)量為多少時,這種產(chǎn)品獲得的利潤最大?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形的各邊、、上分別選取點、,使得,如果,,四邊形的最大面積是( .

A.1350B.1300

C.1250D.1200

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“我要上春晚”進入決賽階段,最終將有甲、乙、丙、丁4名選手進行決賽的終極較量,決賽分3期進行,每期比賽淘汰1名選手,最終留下的歌手即為冠軍.假設(shè)每位選手被淘汰的可能性都相等.

1)甲在第1期比賽中被淘汰的概率為     ;

2)用樹狀圖法或表格法求甲在第2期被淘汰的概率.

查看答案和解析>>

同步練習(xí)冊答案