【題目】如圖,∠AOB=90°,OM平分∠AOB,直角三角板的直角頂點(diǎn)P在射線OM上移動(dòng),兩直角邊分別與OA、CB相交于點(diǎn)C、D.

(1)問PC與PD相等嗎?試說明理由.

(2)若OP=2,求四邊形PCOD的面積.

【答案】(1)見解析;(2)2.

【解析】

(1)過P分別作PEOBE,PFOAF,由角平分線的性質(zhì)易得PE=PF,然后由同角的余角相等證明∠1=2,即可由ASA證明CFP≌△DEP,從而得證

(2)只要證明四邊形PCOD的面積=正方形OEPF的面積即可.

(1)結(jié)論:PC=PD.

理由:如圖,

P分別作PEOBE,PFOAF,

∴∠CFP=DEP=90°,

OM是∠AOB的平分線,

PE=PF,

∵∠1+FPD=90°,AOB=90°,

∴∠FPE=90°,

∴∠2+FPD=90°,

∴∠1=2,

CFPDEP中,,

∴△CFP≌△DEP(ASA),

PC=PD;

(2)∵四邊形PCOD的面積=正方形OEPF的面積,

∴四邊形PCOD的面積=×2×2=2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在地面上有兩根等長(zhǎng)的立柱AB,CD,它們之間懸掛了一根拋物線形狀的繩子,按照?qǐng)D中的直角坐標(biāo)系,這條繩子可以用y= x2 x+3表示
(1)求這條繩子最低點(diǎn)離地面的距離;
(2)現(xiàn)由于實(shí)際需要,要在兩根立柱之間再加一根立柱EF對(duì)繩子進(jìn)行支撐(如圖②),已知立柱EF到AB距離為3m,兩旁的繩子也是拋物線形狀,且立柱EF左側(cè)繩子的最低點(diǎn)到EF的距離為1m,到地面的距離為1.8m,求立柱EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅游景點(diǎn)的門票價(jià)格如下表:

購(gòu)票人數(shù)(單位人)

1﹣50

51﹣100

100以上

每人門票價(jià)(單位元)

80

75

70

某旅行社計(jì)劃帶甲、乙兩個(gè)旅行團(tuán)共100多人計(jì)劃去游覽該景點(diǎn),其中甲旅行團(tuán)人數(shù)少于50人,乙旅行團(tuán)人數(shù)有50 多人但不足100人,如果兩旅行團(tuán)都以各自團(tuán)體為單位單獨(dú)購(gòu)票,則一共支付7965元;如果兩旅行團(tuán)聯(lián)合起來作為一個(gè)團(tuán)體購(gòu)票,則只管花費(fèi)7210元.間兩旅行團(tuán)各有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是等邊三角形ABC內(nèi)部一個(gè)動(dòng)點(diǎn),∠APB=120°,⊙O是△APB的外接圓.AP,BP的延長(zhǎng)線分別交BC,AC于D,E.
(1)求證:CA,CB是⊙O的切線;
(2)已知AB=6,G在BC上,BG=2,當(dāng)PG取得最小值時(shí),求PG的長(zhǎng)及∠BGP的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)過點(diǎn)(1,0)和點(diǎn)(0,﹣1),且頂點(diǎn)在第三象限,則a的取值范圍是(
A.a>0
B.0<a<1
C.1<a<2
D.﹣1<a<1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,則下列結(jié)論中不正確的是(
A.∠B=48°
B.∠AED=66°
C.∠A=84°
D.∠B+∠C=96°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“3.15“植樹節(jié)活動(dòng)后,某校對(duì)栽下的甲、乙、丙、丁四個(gè)品種的樹苗進(jìn)行成活率觀測(cè),以下是根據(jù)觀測(cè)數(shù)據(jù)制成的統(tǒng)計(jì)圖表的一部分; 表1:栽下的各品種樹苗棵數(shù)統(tǒng)計(jì)表表

植樹品種

甲種

乙種

丙種

丁種

植樹棵數(shù)

150

125

125

請(qǐng)你根據(jù)以上信息解答下列問題:
(1)這次栽下的四個(gè)品種的樹苗共棵,乙品種樹苗棵.
(2)圖1中,甲%、乙%;
(3)已知這批樹苗成活率為90%,將圖2補(bǔ)充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】西瓜和甜瓜是新疆特色水果,小明的媽媽先購(gòu)買了2千克西瓜和3千克甜瓜,共花費(fèi)9元;后又購(gòu)買了1千克西瓜和2千克甜瓜,共花費(fèi)5.5元.(每次兩種水果的售價(jià)都不變)
(1)求兩種水果的售價(jià)分別是每千克多少元?
(2)如果還需購(gòu)買兩種水果共12千克,要求甜瓜的數(shù)量不少于西瓜數(shù)量的兩倍,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買方案,使所需總費(fèi)用最低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校開展青少年科技創(chuàng)新比賽活動(dòng),“喜洋洋代表隊(duì)設(shè)計(jì)了一個(gè)遙控車沿直線軌道AC做勻速直線運(yùn)動(dòng)的模型.甲、乙兩車同時(shí)分別從A,B出發(fā),沿軌道到達(dá)C,AC,甲的速度是乙的速度的1.5,設(shè)t分后甲、乙兩遙控車與B處的距離分別為d1,d2(單位:),d1,d2t的函數(shù)關(guān)系如圖,試根據(jù)圖象解決下列問題.

(1)填空乙的速度v2=________/;

(2)寫出d1t的函數(shù)表達(dá)式;

(3)若甲、乙兩遙控車的距離超過10米時(shí)信號(hào)不會(huì)產(chǎn)生相互干擾,試探究什么時(shí)間兩遙控車的信號(hào)不會(huì)產(chǎn)生相互干擾?

查看答案和解析>>

同步練習(xí)冊(cè)答案