如圖,已知線段AB的同側(cè)有兩點C、D滿足∠ACB=∠ADB=60°,∠ABD=90°-
1
2
∠DBC.求證:AC=AD.
證明:以AB為軸作△ABC的對稱△ABC′,如圖:
則AC=AC′,∠C=∠C′=60°,∠ABC′=∠ABC,
因為∠ABD=90°-
1
2
∠DBC
所以2∠ABD+∠DBC=180°
所以∠ABD+∠DBC+∠ABD=180°
即∠ABC+∠ABD=180°
所以∠ABC′+∠ABD=180°
所以D、B、C′共線
又因為∠D=60°
所以∠DAC=180°-∠C′-∠D=60°=∠D=∠C′
所以△ADC′是等邊三角形,
所以AD=AC′=AC.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC中,∠C=90°,∠B=60°,AC=4,等邊△DEF的一邊在直角邊AC上移動,當點E與點C重合時,點D恰好落在AB邊上,
(1)求等邊△DEF的邊長;
(2)請你探索,在移動過程中,線段CE與圖中哪條線段始終保持相等,并說明理由;
(3)若設(shè)線段CE為x,在移動過程中,等邊△DEF與Rt△ABC兩圖形重疊部分的面積為y.請你寫出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

附加題,學(xué)完“幾何的回顧”一章后,老師布置了一道思考題:
如圖,點M,N分別在正三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點Q.求證:∠BQM=60度.
(1)請你完成這道思考題;
(2)做完(1)后,同學(xué)們在老師的啟發(fā)下進行了反思,提出了許多問題,如:
①若將題中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?
②若將題中的點M,N分別移動到BC,CA的延長線上,是否仍能得到∠BQM=60°?
③若將題中的條件“點M,N分別在正三角形ABC的BC,CA邊上”改為“點M,N分別在正方形ABCD的BC,CD邊上”,是否仍能得到∠BQM=60°?…
請你作出判斷,在下列橫線上填寫“是”或“否”:①______;②______;③______.并對②,③的判斷,選擇一個給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知等邊△ABC和等邊△A′B′C′的面積分別為4、9,則△ABC、△A′B′C′的邊長比為( 。
A.4:9B.16:81C.2:3D.3:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,等邊△ABC的邊長為10,點P是邊AB的中點,Q為BC延長線上一點,CQ:BC=1:2,過P作PE⊥AC于E,連PQ交AC邊于D,求DE的長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AD是等邊三角形ABC的中線,AE=AD,則∠EDC=( 。┒龋
A.30B.20C.25D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

等邊三角形的邊長為4,則其面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求證:△BDC是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系內(nèi),試寫出△ABC各頂點的坐標,并求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案