【題目】如圖,是一個三角點陣,從上向下數(shù)有無數(shù)多行,其中第一行有1個點,第二行有2個點,第三行有4個點,第四行有8個點,….那么這個三角點陣中前n行的點數(shù)之和可能是( 。
A. 510 B. 511 C. 512 D. 513
【答案】B
【解析】
首先由題意可知這個三角點陣中的數(shù),從第2行起,每一行與它的前一行的數(shù)之比等于2,即點陣中的數(shù)成等比數(shù)列,第n行有2n-1個點.根據(jù)等比數(shù)列的求和公式得出這個三角點陣中前n行的點數(shù)之和為2n-1,又29=512,由此得出答案.
∵一個三角點陣,從上向下數(shù)有無數(shù)多行,
其中第一行有1個點,1=20;
第二行有2個點,2=21;
第三行有4個點,4=22;
第四行有8個點,8=23;
…
∴第n行有2n-1個點,
∴這個三角點陣中前n行的點數(shù)之和為: =2n-1,
又∵29=512,
∴29-1=511.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,正比例函數(shù)與反比例函數(shù)的圖象分別交于A、C兩點,已知點B與點D關(guān)于坐標原點O成中心對稱,且點B的坐標為其中.
四邊形ABCD的是______填寫四邊形ABCD的形狀
當(dāng)點A的坐標為時,四邊形ABCD是矩形,求m,n的值.
試探究:隨著k與m的變化,四邊形ABCD能不能成為菱形?若能,請直接寫出k的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一個三角點陣,從上向下數(shù)有無數(shù)多行,其中第一行有1個點,第二行有2個點,第三行有4個點,第四行有8個點,….那么這個三角點陣中前n行的點數(shù)之和可能是( 。
A. 510 B. 511 C. 512 D. 513
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.
(1)AE與FC會平行嗎?說明理由.
(2)AD與BC的位置關(guān)系如何?為什么?
(3)BC平分∠DBE嗎?為什么.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某餐廳計劃購買12張餐桌和一批椅子(不少于12把),現(xiàn)從甲、乙兩商場了解到同一型號的餐桌報價都為每張200元,餐椅報價都為每把50元.甲商場規(guī)定:每購買一張餐桌贈送一把餐椅;乙商場規(guī)定:所有餐桌、餐椅均按報價的八五折銷售,那么,什么情況下到甲商場購買更優(yōu)惠.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折線ABCDE描述了一輛汽車在某一直線上行駛過程中,汽車離出發(fā)地的距離y(km)和行駛時間x(h)之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,給出下列說法:①汽車共行駛了120km;②汽車在行駛途中停留了0.5h;③汽車在整個行駛過程中的平均速度為km/h;④汽車自出發(fā)后3h~4.5h之間行駛的速度在逐漸減小.其中正確的說法是 .(填上所有正確的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程﹣1的步驟如下:
(解析)第一步:﹣1(分數(shù)的基本性質(zhì))
第二步:2x﹣1=3(2x+8)﹣3……(①)
第三步:2x﹣1=6x+24﹣3……(②)
第四步:2x﹣6x=24﹣3+1……(③)
第五步:﹣4x=22(④)
第六步:x=﹣……(⑤)
以上解方程第二步到第六步的計算依據(jù)有:①去括號法則.②等式性質(zhì)一.③等式性質(zhì)二.④合并同類項法則.請選擇排序完全正確的一個選項( 。
A. ②①③④② B. ②①③④③ C. ③①②④③ D. ③①④②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,點E從點A出發(fā)沿AB以每秒lcm的速度向點B運動,同時點D從點C出發(fā)沿CA以每秒2cm的速度向點A運動,運動時間為t秒(0<t<6),過點D作DF⊥BC于點F.
(I)試用含t的式子表示AE、AD、DF的長;
(Ⅱ)如圖①,連接EF,求證:四邊形AEFD是平行四邊形;
(Ⅲ)如圖②,連接DE,當(dāng)t為何值時,四邊形EBFD是矩形?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com