【題目】如圖,小明在大樓45米高(即PH=45米,且PH⊥HC)的窗口P處進行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的

坡度i(即tanABC)為1 .(點P、HB、C、A在同一個平面上

H、B、C在同一條直線上)

1∠PBA的度數(shù)等于________度;

2)求A、B兩點間的距離(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.414, ≈1.732.

【答案】190°252.0

【解析】試題分析:(1)根據(jù)俯角以及坡度的定義即可求解;

2)在直角PHB中,根據(jù)三角函數(shù)即可求得PB的長,然后在直角PBA中利用三角函數(shù)即可求解.

試題解析:

1∵山坡的坡度i(即tanABC)為1

tanABC=,

∴∠ABC=30°;

∵從P點望山腳B處的俯角60°,

∴∠PBH=60°,

∴∠ABP=180°﹣30°﹣60°=90°

故答案為:90

2)由題意得:∠PBH=60°,

∵∠ABC=30°,

∴∠ABP=90°,

∴△PAB為直角三角形,

又∵∠APB=45°

在直角PHB中,PB=PH÷sinPBH=45÷ =30m).

在直角PBA中,AB=PBtanBPA=30≈52.0m).

AB兩點間的距離約為52.0米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.

(1)求二次函數(shù)的表達式;

(2)y軸上是否存在一點P,使PBC為等腰三角形.若存在,請求出點P的坐標;

(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M 達點B時,點M、N同時停止運動,問點M、N運動到何處時,MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,∠BAD的角平分線交BC于點E,交DC的延長線于點F,連接DE

1)求證:DADF

2)若∠ADE=∠CDE30°,DE2,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將A,B,C,D四人隨機分成甲、乙兩組參加羽毛球比賽,每組兩人。

(1)A在甲組的概率是多少?

(2)A,B都在甲組的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)對全校1200名學(xué)生進行“校園安全知識”的教育活動,從1200名學(xué)生中隨機抽取部分學(xué)生進行測試,成績評定按從高分到低分排列分為, , 四個等級,繪制了圖①、圖②兩幅不完整的統(tǒng)計圖.請結(jié)合圖中所給信息解答下列問題:

(1)求本次被抽查的學(xué)生共有多少名?

(2)將條形統(tǒng)計圖和扇形統(tǒng)計圖補充完整;

(3)求扇形統(tǒng)計圖中“”所在的扇形圓心角的度數(shù);

(4)估計全!”等級的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,對角線ACBD相交于點O,PAD上的動點,過點PPMAC,PNBD,垂足分別為MN,若AB=mBC=n,則PM+PN=( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子里,裝有三個分別標有數(shù)字1,2,4的小球,它們的形狀、大小、質(zhì)地等完全相同,小明先從盒子里隨機取出一個小球,記下數(shù)字為x;放回盒子搖勻后,再由小華隨機取出一個小球,記下數(shù)字為y.

(1)寫出(x,y)的所有可能出現(xiàn)的結(jié)果;

2)小明、小華各取一次,由取出小球所確定的數(shù)字作為點的坐標,這樣的點(x,y)中落在反比例函數(shù)y=的圖象上的點的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1在正方形ABCD的外側(cè)作兩個等邊三角形ADEDCF,連接AF,BE

(圖1) (圖2) (備用圖)

(1)請判斷:AFBE的數(shù)量關(guān)系是_____________,位置關(guān)系______________;

(2)如圖2,若將條件“兩個等邊三角形ADEDCF”變?yōu)椤皟蓚等腰三角形ADEDCF,且EA=ED=FD=FC”,第(1)問中的結(jié)論是否仍然成立?請作出判斷并給予證明;

(3)若三角形ADEDCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結(jié)論都能成立嗎?請直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用火柴棒按下列方式搭建三角形:

1)填表:

三角形個數(shù)

1

2

3

4

火柴棒根數(shù)

2)當三角形的個數(shù)為時,火柴棒的根數(shù)是多少?

3)求當時,有多少根火柴棒?

4)當火柴棒的根數(shù)為2017時,三角形的個數(shù)是多少?

查看答案和解析>>

同步練習(xí)冊答案