已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè),且AB=8),與y軸交于點(diǎn)C,其中點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)C在y軸的正半軸上,線段OA、OC的長(OA<OC)是方程x2-14x+48=0的兩個(gè)根.
(1)求此拋物線的解析式;
(2)連接AC、BC,若點(diǎn)E是線段AB上的一個(gè)動點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過點(diǎn)E作EFAC交BC于點(diǎn)F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)在(2)的基礎(chǔ)上試說明S是否存在最大值,若存在,請求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請說明理由.
(1)解方程x2-14x+48=0得x1=6,x2=8,
由題意得
A(-6,0),C(0,8),B(2,0)…(3分)
∵點(diǎn)C(0,8)在拋物線y=ax2+bx+c的圖象上,∴c=8,
將A(-6,0)、B(2,0)代入表達(dá)式,得
0=36a-6b+8
0=4a+2b+8
,
 解得
a=-
2
3
b=-
8
3

∴所求拋物線的表達(dá)式為y=-
2
3
x2-
8
3
x+8; …(2分)

(2)依題意,AE=m,則BE=8-m,
∵OA=6,OC=8,∴AC=10.
∵EFAC,
∴△BEF△BAC,
EF
AC
=
BE
AB
EF
10
=
8-m
8
,
∴EF=
40-5m
4
.…(1分)
過點(diǎn)F作FG⊥AB,垂足為G,
則sin∠FEG=sin∠CAB=
4
5
,
FG
EF
=
4
5

∴FG=
4
5
40-5m
4
=8-m,
∴S=S△BCE-S△BFE=
1
2
(8-m)×8-
1
2
(8-m)(8-m)
=
1
2
(8-m)(8-8+m)=
1
2
(8-m)m=-
1
2
m2+4m. …(2分)
自變量m的取值范圍是0<m<8;  …(1分)

(3)存在.
理由:∵S=-
1
2
m2+4m=-
1
2
(m-4)2+8且-
1
2
<0,
∴當(dāng)m=4時(shí),S有最大值,S最大值=8.  …(2分)
∵m=4,∴點(diǎn)E的坐標(biāo)為(-2,0),
∴△BCE為等腰三角形.  …(1分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,-3)三點(diǎn),對稱軸與拋物線相交于點(diǎn)D、與直線BC相交于點(diǎn)E,連接DE.
(1)求該拋物線的解析式;
(2)平面直角坐標(biāo)系中是否存在一點(diǎn)R,使點(diǎn)R、D、B所成三角形和△DEB全等?若存在,求點(diǎn)R的坐標(biāo);若不存在,說明理由;
(3)在拋物線上是否存在一點(diǎn)P,使△PEB的面積是△BDE的面積的一半?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三角形ABC是以BC為底邊的等腰三角形,點(diǎn)A、C分別是一次函數(shù)y=-
3
4
x+3的圖象與y軸、x軸的交點(diǎn),點(diǎn)B在二次函數(shù)y=
1
8
x2+bx+c
的圖象上,且該二次函數(shù)圖象上存在一點(diǎn)D使四邊形ABCD能構(gòu)成平行四邊形.
(1)試求b,c的值,并寫出該二次函數(shù)表達(dá)式;
(2)動點(diǎn)P從A到D,同時(shí)動點(diǎn)Q從C到A都以每秒1個(gè)單位的速度運(yùn)動,問:
①當(dāng)P運(yùn)動到何處時(shí),有PQ⊥AC?
②當(dāng)P運(yùn)動到何處時(shí),四邊形PDCQ的面積最?此時(shí)四邊形PDCQ的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)學(xué)課上,老師提出:
如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A點(diǎn)的坐標(biāo)為(1,0),點(diǎn)B在x軸上,且在點(diǎn)A的右側(cè),AB=OA,過點(diǎn)A和B作x軸的垂線,分別交二次函數(shù)y=x2的圖象于點(diǎn)C和D,直線OC交BD于點(diǎn)M,直線CD交y軸于點(diǎn)H,記點(diǎn)C、D的橫坐標(biāo)分別為xC、xD,點(diǎn)H的縱坐標(biāo)為yH
同學(xué)發(fā)現(xiàn)兩個(gè)結(jié)論:
①S△CMD:S梯形ABMC=2:3 ②數(shù)值相等關(guān)系:xC•xD=-yH
(1)請你驗(yàn)證結(jié)論①和結(jié)論②成立;
(2)請你研究:如果上述框中的條件“A的坐標(biāo)(1,0)”改為“A的坐標(biāo)(t,0)(t>0)”,其他條件不變,結(jié)論①是否仍成立(請說明理由);
(3)進(jìn)一步研究:如果上述框中的條件“A的坐標(biāo)(1,0)”改為“A的坐標(biāo)(t,0)(t>0)”,又將條件“y=x2”改為“y=ax2(a>0)”,其他條件不變,那么xC、xD與yH有怎樣的數(shù)值關(guān)系?(寫出結(jié)果并說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示的拋物線是二次函數(shù)y=ax2-x+a2-1的圖象,那么a的值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形OABC的邊OC,OA分別與x軸,y軸重合,點(diǎn)B的坐標(biāo)是(
3
,1),點(diǎn)D是AB邊上一個(gè)動點(diǎn)(與點(diǎn)A不重合),沿OD將△OAD翻折,點(diǎn)A落在點(diǎn)P處.
(1)若點(diǎn)P在一次函數(shù)y=2x-1的圖象上,求點(diǎn)P的坐標(biāo);
(2)若點(diǎn)P在拋物線y=ax2圖象上,并滿足△PCB是等腰三角形,求該拋物線解析式;
(3)當(dāng)線段OD與PC所在直線垂直時(shí),在PC所在直線上作出一點(diǎn)M,使DM+BM最小,并求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線l經(jīng)過點(diǎn)M(3,0),且平行于y軸,與拋物線y=ax2交于點(diǎn)N,若S△OMN=9,則a的值是( 。
A.
2
3
B.-
2
3
C.
1
3
D.-
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一座隧道的截面由拋物線和長方形構(gòu)成,長方形的長為8m,寬為2m,隧道最高點(diǎn)P位于AB的中央且距地面6m,建立如圖所示的坐標(biāo)系.
(1)求拋物線的表達(dá)式;
(2)一輛貨車高4m,寬2m,能否從該隧道內(nèi)通過,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

某拋物線型拱橋的示意圖如圖,已知該拋物線的函數(shù)表達(dá)式為y=-
1
48
x2+12
,為保護(hù)該橋的安全,在該拋物線上的點(diǎn)E、F處要安裝兩盞警示燈(點(diǎn)E、F關(guān)于y軸對稱),這兩盞燈的水平距離EF是24米,則警示燈F距水面AB的高度是______米.

查看答案和解析>>

同步練習(xí)冊答案