【題目】如圖,E是□ABCD的邊CD的中點(diǎn),延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:AE=EF;
(2)若∠BAF=90°,BC=15,EF=9,求CD的長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2)CD=24
【解析】
(1)要證明AE=EF,只要證明△AED≌△FEC即可,根據(jù)平行四邊形的性質(zhì)和全等三角形的判定即可解答本題;
(2)根據(jù)(1)中的結(jié)論和勾股定理、平行四邊形的性質(zhì)可以求得CD的長(zhǎng).
(1)證明:∵四邊形ABCD是平行四邊形,點(diǎn)E時(shí)CD的中點(diǎn),
∴AD∥BF,ED=EC,
∴∠D=∠ECF,
在△AED和△FEC中,
∠D=∠ECF,ED=EC,∠AED=∠FEC,
∴△AED≌△FEC(ASA),
∴AE=EF;
(2)由(1)知△AED≌△FEC,
∴AD=FC,
∵四邊形ABCD是平行四邊形,∠BAF=90°,BC=15,EF=9,AE=AF,
∴AD=BC=15,AB=CD,AF=2EF=18,
∴BF=2BC=30,
∴在Rt△ABF中,由勾股定理得:AB=,
∴CD=AB=24.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( 。
A.若 a、b、c是△ABC的三邊,則a2+b2=c2
B.若 a、b、c是Rt△ABC的三邊,則a2+b2=c2
C.若 a、b、c是Rt△ABC的三邊,,則a2+b2=c2
D.若 a、b、c是Rt△ABC的三邊,,則a2+b2=c2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠MON=30°,點(diǎn)A1,A2,A3,…在射線ON上,點(diǎn)B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA2=4,則△AnBnAn+1的邊長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高學(xué)生對(duì)毒品危害性的認(rèn)識(shí),我市相關(guān)部門(mén)每個(gè)月都要對(duì)學(xué)生進(jìn)行“禁毒知識(shí)應(yīng)知應(yīng)會(huì)”測(cè)評(píng).為了激發(fā)學(xué)生的積極性,某校對(duì)達(dá)到一定成績(jī)的學(xué)生授予“禁毒小衛(wèi)士”的榮譽(yù)稱(chēng)號(hào).為了確定一個(gè)適當(dāng)?shù)莫?jiǎng)勵(lì)目標(biāo),該校隨機(jī)選取了七年級(jí)20名學(xué)生在5月份測(cè)評(píng)的成績(jī).數(shù)據(jù)如下:
收集數(shù)據(jù):90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88
整理、描述數(shù)據(jù):
成績(jī)/分 | 88 | 89 | 90 | 91 | 95 | 96 | 97 | 98 | 99 |
學(xué)生人數(shù) | 2 | 1 | 3 | 2 | 1 | 2 | 1 |
數(shù)據(jù)樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù)如下表
平均數(shù) | 眾數(shù) | 中位數(shù) |
93 |
應(yīng)用數(shù)據(jù)
(1)由上表填空:________,________,________,________,
(2)根據(jù)所給數(shù)據(jù),如果該校想確定七年級(jí)前的學(xué)生為“良好”等次,你認(rèn)為“良好”等次的測(cè)評(píng)成績(jī)至少定為________分.
(3)根據(jù)數(shù)據(jù)分析,該校決定在七年級(jí)授予測(cè)評(píng)成績(jī)前的學(xué)生“禁毒小衛(wèi)士”榮譽(yù)稱(chēng)號(hào).請(qǐng)估計(jì)評(píng)選該榮譽(yù)稱(chēng)號(hào)的最低分?jǐn)?shù),并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于點(diǎn)E,在BC上截取BF=AE,連接AF交CE于點(diǎn)G,連接DG交AC于點(diǎn)H,過(guò)點(diǎn)A作AN⊥BC,垂足為N,AN交CE于點(diǎn)M.則下列結(jié)論;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正確的序號(hào)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的圖象如圖所示,點(diǎn)位于坐標(biāo)原點(diǎn), 點(diǎn),,,…,在y軸的正半軸上,點(diǎn),,,…,在二次函數(shù)位于第一象限的圖象上,若△,△,△,…,都為等邊三角形,則的邊長(zhǎng)= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCO的對(duì)角線BO在x軸上,若正方形ABCO的邊長(zhǎng)為4,點(diǎn)B在x負(fù)半軸上,反比例函數(shù)的圖象經(jīng)過(guò)C點(diǎn).
(1)求該反比例函數(shù)的解析式;
(2)若點(diǎn)P是反比例函數(shù)上的一點(diǎn),且△PBO的面積恰好等于正方形ABCO的面積,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】趙爽弦圖是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形,如圖所示,若這四個(gè)全等直角三角形的兩條直角邊分別平行于x軸和y軸,大正方形的頂點(diǎn)B1、C1、C2、C3、…、Cn在直線y=﹣上,頂點(diǎn)D1、D2、D3、…、Dn在x軸上,則第n個(gè)陰影小正方形的面積為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù).
(1)求出該函數(shù)圖象的頂點(diǎn)坐標(biāo),對(duì)稱(chēng)軸,圖象與軸、軸的交點(diǎn)坐標(biāo);
(2)在什么范圍內(nèi)時(shí),隨的增大而增大?當(dāng)在什么范圍內(nèi)時(shí),隨的增大而減小?
(3)當(dāng)在什么范圍內(nèi)時(shí),?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com