【題目】正方形ABCD,CEFG按如圖放置,點B,C,E在同一條直線上,點P在BC邊上,PA=PF,且∠APF=90°,連接AF交CD于點M,有下列結論:①EC=BP;②AP=AM;③∠BAP=∠GFP;④AB2+CE2=AF2;⑤S正方形ABCD+S正方形CEFG=2S△APF.其中正確的是( )
A. ①②③ B. ①③④ C. ①②④⑤ D. ①③④⑤
【答案】D
【解析】
①由同角的余角相等可證出△EPF≌△BAP,由此即可得出EF=BP,再根據(jù)正方形的性質即可得出①成立;②沒有滿足證明AP=AM的條件;③根據(jù)平行線的性質可得出∠GFP=∠EPF,再由∠EPF=∠BAP即可得出③成立;④在Rt△ABP中,利用勾股定理即可得出④成立;⑤結合④即可得出⑤成立.綜上即可得出結論.
①∵∠EPF+∠APB=90°,∠APB+∠BAP=90°,
∴∠EPF=∠BAP.
在△EPF和△BAP中,有,
∴△EPF≌△BAP(AAS),
∴EF=BP,
∵四邊形CEFG為正方形,
∴EC=EF=BP,即①成立;
②無法證出AP=AM;
③∵FG∥EC,
∴∠GFP=∠EPF,
又∵∠EPF=∠BAP,
∴∠BAP=∠GFP,即③成立;
④由①可知EC=BP,
在Rt△ABP中,AB2+BP2=AP2,
∵PA=PF,且∠APF=90°,
∴△APF為等腰直角三角形,
∴AF2=AP2+EP2=2AP2,
∴AB2+BP2=AB2+CE2=AP2=AF2,即④成立;
⑤由④可知:AB2+CE2=AP2,
∴S正方形ABCD+S正方形CGFE=2S△APF,即⑤成立.
故成立的結論有①③④⑤.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形AOBC中,OB=4,OA=3,分別以OB,OA所在直線為x軸、y軸建立平面直角坐標系,F(xiàn)是BC邊上的點,過F點的反比例函數(shù)y=(k>0)的圖象與AC邊交于點E.若將△CEF沿EF翻折后,點C恰好落在OB上的點D處,則點F的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】西安某學校為了改善辦學條件,計劃購置一批電子白板和臺式電腦.經招投標,購買一臺電子白板比購買2臺臺式電腦多3000元,購買2臺電子白板和3臺臺式電腦共需2.7萬元.
(1)設購買一臺臺式電腦需元,購買一臺電子白板需 元(用含的代數(shù)式表示)
(2)求購買一臺電子白板和一臺臺式電腦各需多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在直角坐標平面內,拋物線與軸交于點A,與x軸分別交于點B(-1,0)、點C(3,0),點D是拋物線的頂點.
(1)求拋物線的表達式及頂點D的坐標;
(2)連接AD、DC,求的面積;
(3)點P在直線DC上,聯(lián)結OP,若以O、P、C為頂點的三角形與△ABC相似,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,點E是AC的一點,連接EB,過點A做AM⊥BE,垂足為M,AM與BD相交于點F.
(1)猜想:如圖(1)線段OE與線段OF的數(shù)量關系為 ;
(2)拓展:如圖(2),若點E在AC的延長線上,AM⊥BE于點M,AM、DB的延長線相交于點F,其他條件不變,(1)的結論還成立嗎?如果成立,請僅就圖(2)給出證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】江南農場收割小麥,已知1臺大型收割機和3臺小型收割機1小時可以收割小麥1.4公頃,2臺大型收割機和5臺小型收割機1小時可以收割小麥2.5公頃.
(1)每臺大型收割機和每臺小型收割機1小時收割小麥各多少公頃?
(2)大型收割機每小時費用為300元,小型收割機每小時費用為200元,兩種型號的收割機一共有10臺,要求2小時完成8公頃小麥的收割任務,且總費用不超過5400元,有幾種方案?請指出費用最低的一種方案,并求出相應的費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】射擊訓練班中的甲、乙兩名選手在5次射擊訓練中的成績依次為(單位:環(huán)):
甲:8,8,7,8,9
乙:5,9,7,10,9
教練根據(jù)他們的成績繪制了如下尚不完整的統(tǒng)計圖表:
選手 | 平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 |
甲 | 8 | b | 8 | 0.4 |
乙 | α | 9 | c | 3.2 |
根據(jù)以上信息,請解答下面的問題:
(1)α= ,b= ,c= ;
(2)完成圖中表示乙成績變化情況的折線;
(3)教練根據(jù)這5次成績,決定選擇甲參加射擊比賽,教練的理由是什么?
(4)若選手乙再射擊第6次,命中的成績是8環(huán),則選手乙這6次射擊成績的方差與前5次射擊成績的方差相比會 .(填“變大”、“變小”或“不變”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校開運動會,要買一批筆記本和圓珠筆作為獎品,筆記本要買50本,圓珠筆要買若干支.張老師去了兩家文具店,筆記本和圓珠筆的零售價分別為3元和2元,但甲文具店的營業(yè)員說:“如果筆記本按零售價,那么圓珠筆可按零售價的8折優(yōu)惠.”乙文具店的營業(yè)員說:“筆記本和圓珠筆可按9折優(yōu)惠.”
(1)若要購買的圓珠筆為支,用含的式子表示甲、乙兩個店的收費;
(2)若學校要買100支圓珠筆作為獎品,你認為張老師去哪家文具店較合算?可節(jié)省多少錢?
(3)若買圓珠筆支時,選擇甲文具店較合算,求此時可節(jié)省多少錢?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com