【題目】在中,,以為邊作等腰直角,使,邊交于點(diǎn).
(1)如圖1,過(guò)點(diǎn)作于點(diǎn),當(dāng)時(shí),求線(xiàn)段的長(zhǎng);
(2)如圖2,過(guò)點(diǎn)作于點(diǎn),且,連接, 若為的中點(diǎn),求證:.
【答案】(1)+1;(2)見(jiàn)解析;
【解析】
(1)利用等腰直角求出BD=2,∠ABD=45得到AH=,∠HAD=45,再由, 得到EC=BE,∠EAH=,利用勾股定理求出HE,即可得到EC的長(zhǎng);
(2)連接CD,利用SAS證明△ABF≌△DAC,得到AF=CD. 過(guò)點(diǎn)C作CH⊥AB,交BD于G,連接AG,通過(guò)證明△CGE≌△ADE證得四邊形ADCG是平行四邊形,得到AG=CD,
再根據(jù)得到AG=DG=BG,得到AF=CD=DG=2DE.
(1)∵等腰直角,,,
∴∠ABD=45,AB=,
∴BD=,
∵,
∴AH=,∠HAD=45,
∵, ,
∴,∠DAC=15,
∴,,∠EAH=,
∴∠C=∠EBC,
∴EC=BE
設(shè)HE=x,則AE=2x,
∵,
∴,
得x=1,∴HE=1,
∴EC=BE=BH+HE=+1.
(2)連接CD,
∵AC=BC,
∴∠ABC=∠BAC,
∵,
∴∠FBC=,
∴∠FBA=∠CAD,
∵是等腰直角三角形,
∴AB=AD,
∵AC=BC=FB,
∴△ABF≌△DAC,
∴AF=CD,
過(guò)點(diǎn)C作CH⊥AB,交BD于G,連接AG,
∴CH∥AD,
∴∠ACH=∠DAC,
∵∠CEG=∠AED,AE=CE,
∴△CGE≌△ADE,
∴CG=AD,GE=DE
∴四邊形ADCG是平行四邊形,
∴AG=CD,
∵AC=BC, CH⊥AB,
∴AH=BH,
∵CH∥AD,
∴,
∴BG=GD,
∴AG=BG=DG,
∴AG=2DE,
∴AF=CD=AG=2DE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某游泳館的剖面圖,運(yùn)動(dòng)員小亮站在米高的跳臺(tái)上(即),目測(cè)游泳館遠(yuǎn)處墻壁的最高點(diǎn)的仰角為,已知,游泳館的館頂是一個(gè)弓形,且弓形高是.求該游泳館的館頂離地面的最大高度.(小亮的身高可忽略不計(jì),結(jié)果精確到米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=20°,點(diǎn)P在OA邊上.
(1)以點(diǎn)O為圓心,OP長(zhǎng)為半徑作,交OB于點(diǎn)C;
(2)分別以點(diǎn)P、C為圓心,PC長(zhǎng)為半徑作弧,交于點(diǎn)D、E;
(3)連接DE,分別交OC、OP于點(diǎn)F、G;
(4)連接DP.
根據(jù)以上作圖過(guò)程及所作圖形,下列結(jié)中正確的是_____.(填序號(hào))
①OC垂直平分DP;②∠COD=∠COP;③DF=FG;④OD=DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】樓房AB后有一假山,其坡度為i=1:,山坡坡面上E點(diǎn)處有一休息亭,測(cè)得假山坡腳C與樓房水平距離BC=30米,與亭子距離CE=18米,小麗從樓房頂測(cè)得E點(diǎn)的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,對(duì)稱(chēng)軸為直線(xiàn)x=的拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(6,0)和B(0,4).
(1)求拋物線(xiàn)解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線(xiàn)上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以OA為對(duì)角線(xiàn)的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)①當(dāng)四邊形OEAF的面積為24時(shí),請(qǐng)判斷OEAF是否為菱形?
②是否存在點(diǎn)E,使四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C、E和B、D、F分別在∠GAH的兩邊上,且AB=BC=CD=DE=EF,若∠A=18°,則∠GEF的度數(shù)是( )
A. 80° B. 90° C. 100° D. 108°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,點(diǎn)B關(guān)于的對(duì)稱(chēng)點(diǎn)E恰好落在上,若,則的度數(shù)為( 。
A.45°B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,內(nèi)接于,,是的直徑,點(diǎn)是延長(zhǎng)線(xiàn)上一點(diǎn),且.
求證:是的切線(xiàn);
若,求的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD是BC邊上的中線(xiàn).求證:AD⊥BC.
(填空)
證明:∵AD是BC邊上的中線(xiàn)
∴BD=CD(中線(xiàn)的意義)
在△ABD和△ACD中
∵
①________;②________;③________.
∴ ________≌ ________(________)
∴∠ADB=________(________)
∴∠ADB= ∠BDC=90°(平角的定義)
∴AD⊥BC(垂直的定義)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com