精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線相交于O.過點OEFBC分別交AB、ACEF.若∠BOC=130°,∠ABC:∠ACB=32,求∠AEF和∠EFC

【答案】AEF=60°,EFC=140°.

【解析】

先根據三角形內角和定理,求出∠OBC+OCB的度數,再根據角平分線定義和已知中的∠ABC:∠ACB=3:2,求出∠ABC、∠ACB的度數,最后依據平行線的性質求出∠AEF和∠EFC的度數.

∵∠ABC: ∠ACB=3:2,

∴設∠ABC=3x, ∠ACB=2x,

∵BO、CO分別平分 ∠ ABC、 ∠ ACB,

∴∠ABO=∠CBO=x,∠ACO=∠BCO=x,

又∵∠BOC=130°,

BOC中,∠BOC+∠OBC+∠OCB=180°,

∴130°+x+x=180°,

解得:x=20°,

∴∠ABC=3x=60°, ∠ACB=2x=40°,

∵EF∥BC,

∴∠AEF=∠ABC=60°,

∠EFC+∠ACB=180°,

∴∠EFC=140°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,已知是等腰直角三角形,,點DBC的中點作正方形DEFG,使點AC分別在DGDE上,連接AE,BG

試猜想線段BGAE的數量關系是______;

將正方形DEFG繞點D逆時針方向旋轉,

判斷中的結論是否仍然成立?請利用圖2證明你的結論;

,當AE取最大值時,求AF的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】 如圖,ABC中,AB=AC,BAC=90°,點D是直線AB上的一動點(不和A、B重合),BECDE,交直線ACF.

1)點D在邊AB上時,試探究線段BDABAF的數量關系,并證明你的結論;

2)點DAB的延長線或反向延長線上時,(1)中的結論是否成立?若不成立,請直接寫出正確結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,△ABC 是等腰直角三角形,BC=AB,A 點在 x 負半軸上,直角頂點 B y 軸上,點 C x 軸上方.

(1)如圖1所示,若A的坐標是(﹣3,0),點 B的坐標是(0,1),求點 C 的坐標;

(2)如圖2,過點 C CDy 軸于 D,請直接寫出線段OA,OD,CD之間等量關系;

(3)如圖3,若 x 軸恰好平分BAC,BC x 軸交于點 E,過點 C CFx 軸于 F,問 CF AE 有怎樣的數量關系?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,已知直線l1l2,且l3l1,l2分別相交于AB兩點,l4l1l2分別交于C,D兩點,∠ACP1,BDP2CPD3,

P在線段AB

(1)若∠122°233°,則∠3________;

(2)試找出∠1,23之間的等量關系,并說明理由;

(3)應用(2)中的結論解答下列問題

如圖②,AB處北偏東40°的方向上,在C處的北偏西45°的方向上,求∠BAC的度數;

(4)如果點P在直線l3上且在A,B兩點外側運動時,其他條件不變,試探究∠1,23之間的關系(PA,B兩點不重合),直接寫出結論即可.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(-1,0),(3,0),現同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點A,B的對應點C,D,連接AC,BD,CD.

(1)求點C,D的坐標及平行四邊形ABDC的面積.

(2)在y軸上是否存在一點P,連接PA,PB,使=2,若存在這樣一點,求出點P的坐標,若不存在,試說明理由.

(3)點P是四邊形ABCD邊上的點,若△OPC為等腰三角形時,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,PB與⊙O相切于點B,連接PA交⊙O于點C,連接BC.
(1)求證:∠BAC=∠CBP;
(2)求證:PB2=PCPA;
(3)當AC=6,CP=3時,求sin∠PAB的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校要從甲、乙兩名同學中挑選一人參加創(chuàng)新能力大賽,在最近的五次選拔測試中, 他倆的成績分別如下表,請根據表中數據解答下列問題:

第 1 次

第 2 次

第 3 次

第 4 次

第 5 次

平均分

眾數

中位數

方差

60 分

75 分

100 分

90 分

75 分

80 分

75 分

75 分

190

70 分

90 分

100 分

80 分

80 分

80 分

80 分

(1)把表格補充完整:

(2)在這五次測試中,成績比較穩(wěn)定的同學是多少;若將 80 分以上(含 80 分) 的成績視為優(yōu)秀,則甲、乙兩名同學在這五次測試中的優(yōu)秀率分別是多少;

(3)歷屆比賽表明,成績達到80分以上(含 80分)就很可能獲獎,成績達到 90分以上(含90分)就很可能獲得一等獎,那么你認為選誰參加比賽比較合適?說明你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖, 的中線, 是線段 上一點(不與點 重合). 于點 , ,連結

(1)如圖1,當點 重合時,求證:四邊形 是平行四邊形;
(2)如圖2,當點 不與 重合時,(1)中的結論還成立嗎?請說明理由.
(3)如圖3,延長 于點 ,若 ,且 .當 , 時,求 的長.

查看答案和解析>>

同步練習冊答案