【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線相交于O.過點O作EF∥BC分別交AB、AC于E、F.若∠BOC=130°,∠ABC:∠ACB=3:2,求∠AEF和∠EFC.
【答案】∠AEF=60°,∠EFC=140°.
【解析】
先根據三角形內角和定理,求出∠OBC+∠OCB的度數,再根據角平分線定義和已知中的∠ABC:∠ACB=3:2,求出∠ABC、∠ACB的度數,最后依據平行線的性質求出∠AEF和∠EFC的度數.
∵∠ABC: ∠ACB=3:2,
∴設∠ABC=3x, ∠ACB=2x,
∵BO、CO分別平分 ∠ ABC、 ∠ ACB,
∴∠ABO=∠CBO=x,∠ACO=∠BCO=x,
又∵∠BOC=130°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∴130°+x+x=180°,
解得:x=20°,
∴∠ABC=3x=60°, ∠ACB=2x=40°,
∵EF∥BC,
∴∠AEF=∠ABC=60°,
∠EFC+∠ACB=180°,
∴∠EFC=140°.
科目:初中數學 來源: 題型:
【題目】如圖1,已知是等腰直角三角形,,點D是BC的中點作正方形DEFG,使點A、C分別在DG和DE上,連接AE,BG.
試猜想線段BG和AE的數量關系是______;
將正方形DEFG繞點D逆時針方向旋轉,
判斷中的結論是否仍然成立?請利用圖2證明你的結論;
若,當AE取最大值時,求AF的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 如圖,△ABC中,AB=AC,∠BAC=90°,點D是直線AB上的一動點(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點D在邊AB上時,試探究線段BD、AB和AF的數量關系,并證明你的結論;
(2)點D在AB的延長線或反向延長線上時,(1)中的結論是否成立?若不成立,請直接寫出正確結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,△ABC 是等腰直角三角形,BC=AB,A 點在 x 負半軸上,直角頂點 B 在 y 軸上,點 C 在 x 軸上方.
(1)如圖1所示,若A的坐標是(﹣3,0),點 B的坐標是(0,1),求點 C 的坐標;
(2)如圖2,過點 C 作 CD⊥y 軸于 D,請直接寫出線段OA,OD,CD之間等量關系;
(3)如圖3,若 x 軸恰好平分∠BAC,BC與 x 軸交于點 E,過點 C作 CF⊥x 軸于 F,問 CF 與 AE 有怎樣的數量關系?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,已知直線l1∥l2,且l3和l1,l2分別相交于A,B兩點,l4和l1,l2分別交于C,D兩點,∠ACP=∠1,∠BDP=∠2,∠CPD=∠3,
點P在線段AB上.
(1)若∠1=22°,∠2=33°,則∠3=________;
(2)試找出∠1,∠2,∠3之間的等量關系,并說明理由;
(3)應用(2)中的結論解答下列問題;
如圖②,點A在B處北偏東40°的方向上,在C處的北偏西45°的方向上,求∠BAC的度數;
(4)如果點P在直線l3上且在A,B兩點外側運動時,其他條件不變,試探究∠1,∠2,∠3之間的關系(點P和A,B兩點不重合),直接寫出結論即可.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(-1,0),(3,0),現同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點A,B的對應點C,D,連接AC,BD,CD.
(1)求點C,D的坐標及平行四邊形ABDC的面積.
(2)在y軸上是否存在一點P,連接PA,PB,使=2,若存在這樣一點,求出點P的坐標,若不存在,試說明理由.
(3)點P是四邊形ABCD邊上的點,若△OPC為等腰三角形時,直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PB與⊙O相切于點B,連接PA交⊙O于點C,連接BC.
(1)求證:∠BAC=∠CBP;
(2)求證:PB2=PCPA;
(3)當AC=6,CP=3時,求sin∠PAB的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校要從甲、乙兩名同學中挑選一人參加創(chuàng)新能力大賽,在最近的五次選拔測試中, 他倆的成績分別如下表,請根據表中數據解答下列問題:
第 1 次 | 第 2 次 | 第 3 次 | 第 4 次 | 第 5 次 | 平均分 | 眾數 | 中位數 | 方差 | |
甲 | 60 分 | 75 分 | 100 分 | 90 分 | 75 分 | 80 分 | 75 分 | 75 分 | 190 |
乙 | 70 分 | 90 分 | 100 分 | 80 分 | 80 分 | 80 分 | 80 分 |
(1)把表格補充完整:
(2)在這五次測試中,成績比較穩(wěn)定的同學是多少;若將 80 分以上(含 80 分) 的成績視為優(yōu)秀,則甲、乙兩名同學在這五次測試中的優(yōu)秀率分別是多少;
(3)歷屆比賽表明,成績達到80分以上(含 80分)就很可能獲獎,成績達到 90分以上(含90分)就很可能獲得一等獎,那么你認為選誰參加比賽比較合適?說明你的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖, 是 的中線, 是線段 上一點(不與點 重合). 交 于點 , ,連結 .
(1)如圖1,當點 與 重合時,求證:四邊形 是平行四邊形;
(2)如圖2,當點 不與 重合時,(1)中的結論還成立嗎?請說明理由.
(3)如圖3,延長 交 于點 ,若 ,且 .當 , 時,求 的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com