【題目】如圖,矩形ABCD中,AB=2cm,BC=6cm,把△ABC沿對角線AC折疊,得到△AB′C,且B′C與AD相交于點E,則AE的長為cm.

【答案】
【解析】解:∵四邊形ABCD是矩形, ∴AD∥BC,AD=BC=6cm,CD=AB=2cm,
∴∠ACB=∠DAC.
由折疊的性質得:∠ACB=∠ECA,
∴∠DAC=∠ECA.
∴AE=CE,
設AE=x,則CE=x,DE=6﹣x,
在Rt△CDE中,DE2+CD2=CE2
即(6﹣x)2+22=x2 ,
解得:x=
即AE=
所以答案是: ,
【考點精析】本題主要考查了矩形的性質和翻折變換(折疊問題)的相關知識點,需要掌握矩形的四個角都是直角,矩形的對角線相等;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+3的圖象分別與x軸、y軸交于點A、B,以線段AB為邊在第一象限內作等腰Rt△ABC,∠BAC=90°,則過B、C兩點直線的解析式是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果商從批發(fā)市場用8000元購進了大櫻桃和小櫻桃各200千克,大櫻桃的進價比小櫻桃的進價每千克多20元.大櫻桃售價為每千克40元,小櫻桃售價為每千克16元.

(1)大櫻桃和小櫻桃的進價分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?

(2)該水果商第二次仍用8000元錢從批發(fā)市場購進了大櫻桃和小櫻桃各200千克,進價不變,但在運輸過程中小櫻桃損耗了20%.若小櫻桃的售價不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價最少應為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADBC,ABCD,AC,BD交于O點,過O點的直線EFADE點,交BCF點,且BF=DE,則圖中的全等三角形共有(  )

A. 6 B. 5 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一塊長、寬、高分別為6cm、4cm、3cm的長方體木塊,一只螞蟻要從長方體木塊的一個頂點A處,沿著長方體的表面到長方體上和A相對的頂點B處吃食物,那么它需要爬行的最短路徑的長是( )

A. cm B. cm C. cm D. 9cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明和小月兩家位于A,B兩處隔河相望,要測得兩家之間的距離,小明設計方案如下:

①從點A出發(fā)沿河岸畫一條射線AM;

②在射線AM上截取AF=FE;

③過點EECAB,使B,F(xiàn),C在一條直線上;

CE的長就是A,B間的距離.

(1)請你說明小明設計的原理.

(2)如果不借助測量儀,小明的設計中哪一步難以實現(xiàn)?

(3)你能設計出更好的方案嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠C=90°AB=5cmBC=3cm,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒1cm,設出發(fā)的時間為t秒.

1)出發(fā)2秒后,求ABP的周長.

2)問t為何值時,BCP為等腰三角形?(要有必要的過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2017湖北省鄂州市,第8題,3分)小東家與學校之間是一條筆直的公路,早飯后,小東步行前往學校,圖中發(fā)現(xiàn)忘帶畫板,停下給媽媽打電話,媽媽接到電話后,帶上畫板馬上趕往學校,同時小東沿原路返回,兩人相遇后,小東立即趕往學校,媽媽沿原路返回16min到家,再過5min小東到達學校,小東始終以100m/min的速度步行,小東和媽媽的距離y(單位:m)與小東打完電話后的步行時間t(單位:min)之間的函數(shù)關系如圖所示,下列四種說法:

①打電話時,小東和媽媽的距離為1400米;

②小東和媽媽相遇后,媽媽回家的速度為50m/min;

③小東打完電話后,經過27min到達學校;

④小東家離學校的距離為2900m

其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】AD是ABC的邊BC上的中線,AB=12,AC=8,則邊BC的取值范圍是_______________________;中線AD的取值范圍是__________________.

查看答案和解析>>

同步練習冊答案