【題目】已知二次函數(shù)y=2x2+4x-6.
(1)將其化成y=a(x-h)2+k的形式;
(2)寫出開口方向,對稱軸方程,頂點(diǎn)坐標(biāo);
(3)求圖象與兩坐標(biāo)軸的交點(diǎn)坐標(biāo);
(4)畫出函數(shù)圖象;
(5)說明其圖象與拋物線y=x2的關(guān)系;
(6)當(dāng)x取何值時(shí),y隨x增大而減小;
(7)當(dāng)x取何值時(shí),y>0,y=0,y<0;
(8)當(dāng)x取何值時(shí),函數(shù)y有最值?其最值是多少?
(9)當(dāng)y取何值時(shí),-4<x<0;
(10)求函數(shù)圖象與兩坐標(biāo)軸交點(diǎn)所圍成的三角形面積.
【答案】(1)y=2(x+1)2-8;
(2)開口向上,直線x=-1,頂點(diǎn)(-1,-8);
(3)與x軸交點(diǎn)(-3,0)(1,0),與y軸交點(diǎn)(0,-6);
(4)圖略;
(5)將拋物線y=x2向左平移1個(gè)單位,向下平移8個(gè)單位;然后圖像上所有點(diǎn)橫坐標(biāo)擴(kuò)大為原來的2倍,得到y=2x2+4x-6的圖象;
(6)x≤-1;
(7)當(dāng)x<-3或x>1時(shí),y>0;當(dāng)x=-3或x=1時(shí),y=0;
當(dāng)-3<x<1時(shí),y<0;
(8)x=-1時(shí),y最小值=-8;
(9)-8≤y<10;
(10)S△=12.
【解析】試題分析:(1)將函數(shù)表達(dá)式配方成頂點(diǎn)式形式,先將二次項(xiàng)、一次項(xiàng)分別提取a,然后加上,再減去 即可得到y=2(x+1)2-8.(2)由a值的正負(fù),或圖像可判斷開口方向。頂點(diǎn)式可看出對稱軸和頂點(diǎn)坐標(biāo)。(3)分別讓x=0,y=0可分別求出圖像與y軸的坐標(biāo),和x軸的坐標(biāo).(4)可根據(jù)頂點(diǎn)坐標(biāo),圖像與x、y軸交點(diǎn)坐標(biāo),簡略畫出函數(shù)圖像.(5)將拋物線y=x2經(jīng)過一定的平移可得到y=2(x+1)2-8.(6)根據(jù)函數(shù)圖像可判斷函數(shù)的增減性,最值以及x的取值與y.
試題解析:(1)通過配方法可以將y=2x2+4x-6配方成y=2(x+1)2-8.
(2)由圖像可以看出開口向上,由頂點(diǎn)式得對稱軸為直線x=-1,頂點(diǎn)坐標(biāo)為(-1,-8);
(3)當(dāng)y=0時(shí)求得與x軸交點(diǎn)(-3,0)(1,0),可求得當(dāng)x=0時(shí)與y軸交點(diǎn)(0,-6);
(4)如圖所示為拋物線圖像;(5)函數(shù)圖像與拋物線y=x2的關(guān)系:觀察圖可知,是由拋物線y=x2先向左平移一個(gè)單位,然后圖像上所有點(diǎn)橫坐標(biāo)擴(kuò)大為原來的2倍,然后再向下平移八個(gè)單位得到的;(6)觀察圖,在對稱軸左邊,即x≤-1時(shí),y隨x的增大而減小。(7)有圖得,x<-3或x>1時(shí),y>0;當(dāng)x=-3或x=1時(shí),y=0;當(dāng)-3<x<1時(shí),y<0;(8)由圖得,當(dāng)x=-1時(shí),y有最小值,y最小=-8;(9)當(dāng)x=-4時(shí),y=10;當(dāng)x=0時(shí),y=-8;所以,當(dāng)-8≤y≤10時(shí),-4≤x≤0;(10)函數(shù)圖像與坐標(biāo)軸交點(diǎn)坐標(biāo)分別為(-3,0)、(1,0)、(0,-6),所以圍成的三角形面積S=(3+1)×6×=12.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.﹣a(a﹣b)=﹣a2﹣ab
B.2ab3a=6a2b
C.(2ab)2÷a2b=4ab
D.(a﹣1)(1﹣a)=a2﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.a7÷a4=a3
B.5a2﹣3a=2a
C.3a4a2=3a8
D.(a3b2)2=a5b4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ABC和射線BD上一點(diǎn)P(點(diǎn)P與點(diǎn)B不重合,且點(diǎn)P到BA,BC的距離分別為PE,PF).
(1)若∠EBP=40°,∠FBP=20°,試比較PE,PF的大小;
(2)若∠EBP=α,∠FBP=β,α,β都是銳角,且α>β,請判斷PE,PF的大小,并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算(﹣4a2+12a3b)÷(﹣4a2)的結(jié)果是( 。
A. 1﹣3ab B. ﹣3ab C. 1+3ab D. ﹣1﹣3ab
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在中, .過A點(diǎn)的直線從與邊重合的位置開始繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)角,直線交BC邊于點(diǎn)(點(diǎn)不與點(diǎn)、點(diǎn)重合),的邊始終在直線上(點(diǎn)在點(diǎn)的上方),且,連接。
(1)當(dāng)時(shí),
①如圖a,當(dāng)時(shí),求的度數(shù);
②如圖b,當(dāng)時(shí), 的度數(shù)是否發(fā)生變化?說明理由.
(2)如圖c,當(dāng)時(shí),請直接寫出與之間的數(shù)量關(guān)系,不必證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com