已知:如圖,點E,A,C在同一直線上,AB∥CD,AB=CE,AC=CD.
求證:BC=ED.

【答案】分析:首先由AB∥CD,根據平行線的性質可得∠BAC=∠ECD,再有條件AB=CE,AC=CD可證出△BAC和△ECD全等,再根據全等三角形對應邊相等證出CB=ED.
解答:證明:∵AB∥CD,
∴∠BAC=∠ECD,
在△BAC和△ECD中
∴△BAC≌△ECD(SAS),
∴CB=ED.
點評:此題主要考查了全等三角形的判定與性質,全等三角形的判定是結合全等三角形的性質證明線段和角相等的重要工具.在判定三角形全等時,關鍵是選擇恰當?shù)呐卸l件.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、已知:如圖,點O為?ABCD的對角線BD的中點,直線EF經過點O,分別交BA、DC的延長線于點E、F,求證:AE=CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,點A、B分別在x軸、y軸上,以OA為直徑的⊙P交AB于點C(-
2
5
,
4
5
)
,E為直徑精英家教網OA上一動點(與點O、A不重合).EF⊥AB于點F,交y軸于點G.設點E的橫坐標為x,△BGF的面積為y.
(1)求直線AB的解析式;
(2)求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,點A、B、C、D在同一條直線上,EA⊥AD,F(xiàn)D⊥AD,AE=DF,AB=DC.BF,CE相交于點O.
(1)求證:∠ACE=∠DBF;
(2)若點B是AC的中點,∠E=60°,AE=4,求△OBC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,點P是半徑為5cm的⊙O外的一點,OP=13cm,PT切⊙O于T,過P點作⊙O的割線PAB,(PB>PA).設PA=x,PB=y,求y關于x的函數(shù)解析式,并確定自變量x的取值范圍.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•淮陰區(qū)模擬)已知:如圖,點E、A、C在同一條直線上,AB=CE,AC=CD,BC=ED.求證:AB∥CD.

查看答案和解析>>

同步練習冊答案