【題目】如圖,△ABC中,D為AB上一點,E為BC上一點,且AC=CD=BD=BE,∠A=50°,則∠CDE的度數(shù)為( 。
A.50°
B.51°
C.51.5°
D.52.5°

【答案】D
【解析】解:∵AC=CD=BD=BE,∠A=50°,
∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,
∵∠B+∠DCB=∠CDA=50°,
∴∠B=25°,
∵∠B+∠EDB+∠DEB=180°,
∴∠BDE=∠BED= (180°﹣25°)=77.5°,
∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,
故選D.
根據(jù)等腰三角形的性質推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根據(jù)三角形的外角性質求出∠B=25°,由三角形的內(nèi)角和定理求出∠BDE,根據(jù)平角的定義即可求出選項.本題主要考查對等腰三角形的性質,三角形的內(nèi)角和定理,三角形的外角性質,鄰補角的定義等知識點的理解和掌握,熟練地運用這些性質進行計算是解此題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】由一些相同的小正方體搭成的幾何體的左視圖和俯視圖如圖所示,請在網(wǎng)格中涂出一種該幾何體的主視圖,且使該主視圖是軸對稱圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為5,點A的坐標為(﹣4,0),點By軸上,若反比例函數(shù)y=k≠0)的圖象過點C,則該反比例函數(shù)的表達式為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,直線EF與AB,CD分別交于點M,N,過點N的直線GH與AB交于點P,則下列結論錯誤的是( 。

A.∠EMB=∠END
B.∠BMN=∠MNC
C.∠CNH=∠BPG
D.∠DNG=∠AME

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了強化司機的交通安全意識,我市利用交通安全宣傳月對司機進行了交通安全知識問卷調(diào)查.關于酒駕設計了如下調(diào)查問卷:

克服酒駕﹣﹣你認為哪種方式最好?(單選)

A加大宣傳力度,增強司機的守法意識. B在汽車上張貼溫馨提示:“請勿酒駕”.

C司機上崗前簽“拒接酒駕”保證書. D加大檢查力度,嚴厲打擊酒駕.

E查出酒駕追究一同就餐人的連帶責任.

隨機抽取部分問卷,整理并制作了如下統(tǒng)計圖:

根據(jù)上述信息,解答下列問題:

(1)本次調(diào)查的樣本容量是多少?

(2)補全條形圖,并計算B選項所對應扇形圓心角的度數(shù);

(3)若我市有3000名司機參與本次活動,則支持D選項的司機大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示,△ABC中,∠ABC=45°,AE與高BD交于點M,BE=4,EM=3.

(1)BEM與△AEC全等嗎?請說明理由;

(2)BMAC相等嗎?請說明理由;

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC,A、B、C之和為多少?為什么?

A+B+C=180°

理由:作∠ACD=A,并延長BCE

∵∠ACD=   (已作)

ABCD(   

∴∠B=      

而∠ACB+ACD+DCE=180°

∴∠ACB+   +   =180°(   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中,正確的是( )
A.不可能事件發(fā)生的概率為0
B.隨機事件發(fā)生的概率為
C.概率很小的事件不可能發(fā)生
D.投擲一枚質地均勻的硬幣100次,正面朝上的次數(shù)一定為50次

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,AC=BC=a,以斜邊AB上的點O為圓心的圓分別與AC,BC相切于點E,F(xiàn),與AB分別交于點G,H,且EH的延長線和CB的延長線交于點D,則CD的長為

查看答案和解析>>

同步練習冊答案