【題目】將兩塊斜邊長(zhǎng)相等的等腰直角三角板按如圖①擺放,斜邊AB分別交CD,CE于M,N點(diǎn).
(1)如果把圖①中的△BCN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△ACF,連接FM,如圖②,求證:△CMF≌△CMN;
(2)將△CED繞點(diǎn)C旋轉(zhuǎn),則:
①當(dāng)點(diǎn)M,N在AB上(不與點(diǎn)A,B重合)時(shí),線段AM,MN,NB之間有一個(gè)不變的關(guān)系式,請(qǐng)你寫出這個(gè)關(guān)系式,并說明理由;
②當(dāng)點(diǎn)M在AB上,點(diǎn)N在AB的延長(zhǎng)線上(如圖③)時(shí),①中的關(guān)系式是否仍然成立?
【答案】(1)見解析;(2)①見解析;②仍然成立.
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得CF=CN,∠ACF=∠BCN,再求出∠ACM+∠BCN=45°,從而求出∠MCF=45°,然后利用“邊角邊”證明△CMF和△CMN全等即可;
(2)①根據(jù)全等三角形對(duì)應(yīng)邊相等可得FM=MN,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得AF=BN,∠CAF=∠B=45°,從而求出∠BAF=90°,再利用勾股定理列式即可得解;
②把△BCN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△ACF,根據(jù)旋轉(zhuǎn)的性質(zhì)可得AF=BNCF=CN,∠BCN=∠ACF,再求出∠MCF=∠MCN,然后利用“邊角邊”證明△CMF和△CMN全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得MF=MN,然后利用勾股定理列式即可得解.
(1)∵△BCN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△ACF,
∴CF=CN,∠ACF=∠BCN,
∵∠DCE=45°,
∴∠ACM+∠BCN=45°,
∴∠ACM+∠ACF=45°,
即∠MCF=45°,
∴∠MCF=∠MCN,
在△CMF和△CMN中,
,
∴△CMF≌△CMN(SAS);
(2)①∵△CMF≌△CMN,
∴FM=MN,
又∵∠CAF=∠B=45°,
∴∠FAM=∠CAF+∠BAC=45°+45°=90°,
∴AM2+AF2=FM2,
∴AM2+BN2=MN2;
②如圖,把△BCN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△ACF,
則AF=BN,CF=CN,∠BCN=∠ACF,
∵∠MCF=∠ACB-∠MCB-∠ACF=90°-(45°-∠BCN)-∠ACF=45°+∠BCN-∠ACF=45°,
∴∠MCF=∠MCN,
在△CMF和△CMN中,
,
∴△CMF≌△CMN(SAS),
∴FM=MN,
∵∠ABC=45°,
∴∠CAF=∠CBN=135°,
又∵∠BAC=45°,
∴∠FAM=∠CAF-∠BAC=135°-45°=90°,
∴AM2+AF2=FM2,
∴AM2+BN2=MN2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,∠B=∠C=90°,若AB=4,BC=4,CD=1,問:在BC上是否存在點(diǎn)P,使得AP⊥PD?若存在,求出BP的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以為直徑作,點(diǎn)D在上,,,垂足為點(diǎn)E,與和分別交于點(diǎn)M、F.連接、、.
(1)證明:是的切線;
(2)若,,求的半徑長(zhǎng);
(3)在(2)的條件下,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】桌面倒扣著背面圖案相同的四張卡片,其正面分別標(biāo)記有數(shù)字,先任意抽取一張,卡片上的數(shù)記作x,不放回,再抽取一張,卡片上的數(shù)字記作y,設(shè)點(diǎn)A的坐標(biāo)為(x,y).
(1)用樹狀圖或列表法列舉點(diǎn)A所有的坐標(biāo)情況;
(2)求點(diǎn)A在拋物線上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,P為CD邊上一點(diǎn)(DP<CP),∠APB=90°.將△ADP沿AP翻折得到△AD′P,PD′的延長(zhǎng)線交邊AB于點(diǎn)M,過點(diǎn)B作BN∥MP交DC于點(diǎn)N.
(1)求證:AD2=DPPC;
(2)請(qǐng)判斷四邊形PMBN的形狀,并說明理由;
(3)如圖2,連接AC,分別交PM,PB于點(diǎn)E,F(xiàn).若=,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,△ABC的頂點(diǎn)A的坐標(biāo)為(﹣3,4).
(1)畫出△ABC關(guān)于y軸的對(duì)稱圖形△A1B1C1,并寫出A1的坐標(biāo);
(2)畫出將△ABC繞原點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)90°得到的△A2B2C2,并寫出A2的坐標(biāo);
(3)求出(2)中點(diǎn)A所經(jīng)過的路徑的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是一個(gè)橫斷面為拋物線形狀的拱橋,當(dāng)水面寬4 m時(shí),拱頂(拱橋洞的最高點(diǎn))離水面2 m,當(dāng)水面下降1 m時(shí),水面的寬度為_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知直線y=kx+m與x軸、y軸分別交于A、C兩點(diǎn),拋物線y=﹣x2+bx+c經(jīng)過A、C兩點(diǎn),點(diǎn)B是拋物線與x軸的另一個(gè)交點(diǎn),當(dāng)x=﹣時(shí),y取最大值.
(1)求拋物線和直線的解析式;
(2)設(shè)點(diǎn)P是直線AC上一點(diǎn),且S△ABP:S△BPC=1:3,求點(diǎn)P的坐標(biāo);
(3)若直線y=x+a與(1)中所求的拋物線交于M、N兩點(diǎn),問:
①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請(qǐng)說明理由;
②猜想當(dāng)∠MON>90°時(shí),a的取值范圍(不寫過程,直接寫結(jié)論).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了在校運(yùn)會(huì)中取得更好的成績(jī),小丁積極訓(xùn)練.在某次試投中鉛球所經(jīng)過的路線是如圖所示的拋物線的一部分.已知鉛球出手處A距離地面的高度是米,當(dāng)鉛球運(yùn)行的水平距離為3米時(shí),達(dá)到最大高度的B處.小丁此次投擲的成績(jī)是多少米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com