如圖,點(diǎn)A、B、C在一條直線上,AE∥DF,AE=DF,AB=CD.求證:∠E=∠F.

【答案】分析:根據(jù)平行線的性質(zhì)可得到∠A=∠D,根據(jù)等式的性由已知AB=CD可得AC=BD,從而可利用SAS來判定△AEC≌△DFB,再根據(jù)全等三角形的對(duì)應(yīng)角相等即可得到∠E=∠F.
解答:證明:∵AE∥DF,
∴∠A=∠D.
∵AB=CD,
∴AB+BC=CD+BC.
即AC=BD.
在△AEC和△DFB中,
∴△AEC≌△DFB.
∴∠E=∠F.
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)全等三角形的判定方法的理解及運(yùn)用,常用的判定方法有AAS,SAS,SSS,ASA,HL等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A,O,B在同一直線上,射線OD平分∠AOC,射線OE平分∠BOC.
(1)若∠COE=60°,求∠COD及∠BOD的度數(shù);
(2)你能發(fā)現(xiàn)射線OD,OE有什么位置關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A、B、C在⊙O上,AO∥BC,∠OBC=40°,則∠ACB的度數(shù)是
20°
20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•北京)已知:如圖,點(diǎn)E,A,C在同一直線上,AB∥CD,AB=CE,AC=CD.
求證:BC=ED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鞍山)如圖,點(diǎn)G、E、F分別在平行四邊形ABCD的邊AD、DC和BC上,DG=DC,CE=CF,點(diǎn)P是射線GC上一點(diǎn),連接FP,EP.
求證:FP=EP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南通二模)如圖,點(diǎn)A是雙曲線y=
4
x
在第一象限上的一動(dòng)點(diǎn),連接AO并延長交另一分支于點(diǎn)B,以AB為斜邊作等腰Rt△ABC,點(diǎn)C在第二象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷的變化,但始終在一函數(shù)圖象上運(yùn)動(dòng),則這個(gè)函數(shù)的解析式為
y=-
4
x
y=-
4
x

查看答案和解析>>

同步練習(xí)冊(cè)答案