【題目】如圖,以Rt△ABC的直角邊AB為直徑作半圓⊙O與邊BC交于點D,過D作半圓的切線與邊AC交于點E,過E作EF∥AB,與BC交于點F.若AB=20,OF=7.5,則CD的長為( 。
A.7B.8C.9D.10
【答案】C
【解析】
連結(jié)AD,先證明E是AC的中點,可知EF、OF是△ABC的中位線,于是可求出AC及BC的長,再證明△CDA∽△CAB,根據(jù)相似的性質(zhì)即可求出CD的長.
解:連結(jié)AD,如圖,
∵∠BAC=90°,AB為直徑,
∴AC是⊙O的切線,
∵DE為⊙O的切線,
∴ED=EA,
∴∠ADE=∠2,
∵AB為直徑,
∴∠ADB=90°,
∴∠1+∠ADE=90°,∠2+∠C=90°,
∴∠1=∠C,
∴ED=EC,
∴CE=AE,
∵EF∥AB,
∴EF為△ABC的中位線,
∴BF=CF,
而BO=AO,
∴OF為△ABC的中位線,
∴OF∥AE,
∴AE=OF=7.5,
∴AC=2AE=15,
在Rt△ACD中,BC===25,
∵∠DCA=∠ACB,
∴△CDA∽△CAB,
∴=,即=,
∴CD=9.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了扎實推進精準(zhǔn)扶貧工作,某地出臺了民生兜底、醫(yī)保脫貧、教育救助、產(chǎn)業(yè)扶持、養(yǎng)老托管和易地搬遷這六種幫扶措施,每戶貧困戶都享受了2到5種幫扶措施,現(xiàn)把享受了2種、3種、4種和5種幫扶措施的貧困戶分別稱為A、B、C、D類貧困戶.為檢査幫扶措施是否落實,隨機抽取了若干貧困戶進行調(diào)查,現(xiàn)將收集的數(shù)據(jù)繪制成下面兩幅不完整的統(tǒng)計圖:
請根據(jù)圖中信息回答下面的問題:
(1)本次抽樣調(diào)查了多少戶貧困戶?
(2)抽查了多少戶C類貧困戶?并補全統(tǒng)計圖;
(3)若該地共有13000戶貧困戶,請估計至少得到4項幫扶措施的大約有多少戶?
(4)為更好地做好精準(zhǔn)扶貧工作,現(xiàn)準(zhǔn)備從D類貧困戶中的甲、乙、丙、丁四戶中隨機選取兩戶進行重點幫扶,請用樹狀圖或列表法求出恰好選中甲和丁的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過點A(﹣2,2),過點A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經(jīng)軸對稱變換得到的點B′在此反比例函數(shù)的圖象上,則t的值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為拓寬學(xué)生視野,引導(dǎo)學(xué)生主動適應(yīng)社會,促進書本知識和生活經(jīng)驗的深度融合,我市某中學(xué)決定組織部分班級去赤壁開展研學(xué)旅行活動,在參加此次活動的師生中,若每位老師帶17個學(xué)生,還剩12個學(xué)生沒人帶;若每位老師帶18個學(xué)生,就有一位老師少帶4個學(xué)生.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如表所示.
甲種客車 | 乙種客車 | |
載客量/(人/輛) | 30 | 42 |
租金/(元/輛) | 300 | 400 |
學(xué)校計劃此次研學(xué)旅行活動的租車總費用不超過3100元,為了安全,每輛客車上至少要有2名老師.
(1)參加此次研學(xué)旅行活動的老師和學(xué)生各有多少人?
(2)既要保證所有師生都有車坐,又要保證每輛客車上至少要有2名老師,可知租用客車總數(shù)為 輛;
(3)你能得出哪幾種不同的租車方案?其中哪種租車方案最省錢?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC⊥AB,BC交⊙O于點D,點E在劣弧BD上,DE的延長線交AB的延長線于點F,連接AE交BD于點G.
(1)求證:∠AED=∠CAD;
(2)若點E是劣弧BD的中點,求證:ED2=EGEA;
(3)在(2)的條件下,若BO=BF,DE=2,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點分別是邊的中點,連接.將繞點順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為.
① ②
③ ④
(1)問題發(fā)現(xiàn):當(dāng)時, .
(2)拓展探究:試判斷:當(dāng)時,的大小有無變化?請僅就圖②的情況給出證明.
(3)問題解決:當(dāng)旋轉(zhuǎn)至三點共線時,如圖③,圖④,直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年“五一“假期.某數(shù)學(xué)活動小組組織一次登山活動.他們從山腳下A點出發(fā)沿斜坡AB到達B點.再從B點沿斜坡BC到達山頂C點,路線如圖所示.斜坡AB的長為1040米,斜坡BC的長為400米,在C點測得B點的俯角為30°.已知A點海拔121米.C點海拔721米.
(1)求B點的海拔;
(2)求斜坡AB的坡度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+3經(jīng)過點A (1,0)和點B (-3,0),與y軸交于點C,點P為第二象限內(nèi)拋物線上的動點.
(1)拋物線的解析式為__________,拋物線的項點坐標(biāo)為__________;
(2)如圖1,是否存在點P,使四邊形BOCP的面積為8?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
(3)如圖2,連接OP交BC于點D,當(dāng)S△CPD∶S△BPD=1∶2時,請求出點D的坐標(biāo);
(4)如圖3,點E的坐標(biāo)為(0,-1),點G為x軸負半軸上的一點,∠OGE=15°,連接PE,若∠PEG=2∠OGE,請求出點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com