【題目】2018年1月25日,濟(jì)南至成都方向的高鐵線路正式開通,高鐵平均時(shí)速為普快平均時(shí)速的4倍,從濟(jì)南到成都的高鐵運(yùn)行時(shí)間比普快列車減少了26小時(shí).已知濟(jì)南到成都的火車行車?yán)锍碳s為2288千米,求高鐵列車的平均時(shí)速.

【答案】高鐵列車的平均時(shí)速為264千米/小時(shí)

【解析】分析: 設(shè)普快的平均時(shí)速為x千米/小時(shí),高鐵列車的平均時(shí)速為4x千米/小時(shí),根據(jù)題意可得,高鐵走2288千米比普快減少了26小時(shí),據(jù)此列方程求解;

詳解:

設(shè)普快列車的平均時(shí)速為x千米/小時(shí),

根據(jù)題意得

解得x=66

經(jīng)檢驗(yàn),x=66不是增根,

原方程的解為x=66

∴4x=66×4=264

答:高鐵列車的平均時(shí)速為264千米/小時(shí).

點(diǎn)睛: 本題考查了分式方程的應(yīng)用,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列方程求解,注意檢驗(yàn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

數(shù)學(xué)課上,老師出示了這樣一個(gè)問題:

如圖1,正方形為中,點(diǎn)、在對(duì)角線上,且,探究線段、之間的數(shù)量關(guān)系,并證明.

某學(xué)習(xí)小組的同學(xué)經(jīng)過思考,交流了自己的想法:

小明:“通過觀察和度量,發(fā)現(xiàn)存在某種數(shù)量關(guān)系”;

小強(qiáng):“通過觀察和度量,發(fā)現(xiàn)圖1中線段相等”;

小偉:“通過構(gòu)造(如圖2),證明三角形全等,進(jìn)而可以得到線段、之間的數(shù)量關(guān)系”.

老師:“此題可以修改為‘正方形中,點(diǎn)在對(duì)角線上,延長(zhǎng)于點(diǎn),在上取一點(diǎn),連接(如圖3.如果給出、的數(shù)量關(guān)系與、的數(shù)量關(guān)系,那么可以求出的值”.

請(qǐng)回答:

1)求證:

2)探究線段、、之間的數(shù)量關(guān)系,并證明;

3)若,求的值(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是菱形,點(diǎn)A的坐標(biāo)為(0,),分別以A,B為圓心,大于AB的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)E,F,直線EF恰好經(jīng)過點(diǎn)D,則點(diǎn)D的坐標(biāo)為(  )

A. 2,2B. 2,C. 2D. +1,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若菱形的周長(zhǎng)為24cm,一個(gè)內(nèi)角為60°,則菱形的面積為( 。

A. 4cm2B. 9cm2C. 18cm2D. 36cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,∠BOD=45°,按下列要求畫圖并回答問題:

1)利用三角尺,在直線AB上方畫射線OE,使OEAB;

2)利用圓規(guī),分別在射線OA、OE上截取線段OM、ON,使OM=ON,連接MN;

3)利用量角器,畫∠AOD的平分線OFMN于點(diǎn)F;

4)直接寫出∠COF=  °

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線EFMN相交于點(diǎn)O,∠MOE=30°,將一直角三角尺的直角頂點(diǎn)與點(diǎn)O重合,直角邊OAMN重合,OB∠NOE內(nèi)部.操作:將三角尺繞點(diǎn)O以每秒的速度沿順時(shí)針方向旋轉(zhuǎn)一周,設(shè)運(yùn)動(dòng)時(shí)間為t(s).

(1)當(dāng)t為何值時(shí),直角邊OB恰好平分∠NOE?此時(shí)OA是否平分∠MOE?請(qǐng)說明理由;

(2)若在三角尺轉(zhuǎn)動(dòng)的同時(shí),直線EF也繞點(diǎn)O以每秒的速度順時(shí)針方向旋轉(zhuǎn)一周,當(dāng)一方先完成旋轉(zhuǎn)一周時(shí),另一方同時(shí)停止轉(zhuǎn)動(dòng).

當(dāng)t為何值時(shí),OE平分∠AOB?

②OE能否平分∠NOB?若能請(qǐng)直接寫出t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=-x+1的圖象與x軸、y軸分別交于點(diǎn)A、B,以線段AB為邊在第一象限作等邊△ABC.

(1)若點(diǎn)C在反比例函數(shù)y=的圖象上,求該反比例函數(shù)的解析式;

(2)點(diǎn)P(2,m)在第一象限,過點(diǎn)P作x軸的垂線,垂足為D,當(dāng)△PAD與△OAB相似時(shí),P點(diǎn)是否在(1)中反比例函數(shù)圖象上?如果在,求出P點(diǎn)坐標(biāo);如果不在,請(qǐng)加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空,將理由補(bǔ)充完整.

如圖,CFABF,DEABE,∠1+EDC180°,求證:FGBC

證明:∵CFAB,DEAB(已知)

∴∠BED=∠BFC90°(垂直的定義)

EDFC    

∴∠2=∠3    

∵∠1+EDC180°(已知)

又∵∠2+EDC180°(平角的定義)

∴∠1=∠2    

∴∠1=∠3(等量代換)

FGBC    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對(duì)角線BD上的點(diǎn),∠1=∠2.

求證:(1)BE=DF;(2)AF∥CE.

查看答案和解析>>

同步練習(xí)冊(cè)答案