【題目】如圖,在邊長(zhǎng)為1的正方形組成的網(wǎng)格中,的頂點(diǎn)均在格點(diǎn)上,點(diǎn),的坐標(biāo)分別是,,繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后得到

1)畫出,直接寫出點(diǎn)的坐標(biāo);

2)求在旋轉(zhuǎn)過程中,點(diǎn)經(jīng)過的路徑的長(zhǎng);

3)求在旋轉(zhuǎn)過程中,線段所掃過的面積.

【答案】1)見解析,;(2;(3

【解析】

1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的對(duì)應(yīng)點(diǎn)A1B1的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出各點(diǎn)的坐標(biāo);
2)利用勾股定理列式求出OB的長(zhǎng),再利用弧長(zhǎng)公式列式計(jì)算即可得解;
3)根據(jù)AB掃過的面積等于以OAOB為半徑的兩個(gè)扇形的面積的差列式計(jì)算即可得解.

解:(1)△A1OB1如圖所示,

A1-3,3),B1-21);

2)由勾股定理得,

BB1的長(zhǎng)=

3)由勾股定理得,

線段AB所掃過的面積為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,點(diǎn)上,于點(diǎn),于點(diǎn),當(dāng)時(shí),________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD,∠BAD=60°,∠BCD=30°,將AC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)60°AE,連接BECE

1)求證:ADC≌△ABE;

2)求證:

3)若AB=2,點(diǎn)Q在四邊形ABCD內(nèi)部運(yùn)動(dòng),且滿足,直接寫出點(diǎn)Q運(yùn)動(dòng)路徑的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE

1)發(fā)現(xiàn):當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖②所示.

①線段DGBE之間的數(shù)量關(guān)系是   ;

②直線DG與直線BE之間的位置關(guān)系是   ;

2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD2ABAG2AE時(shí),上述結(jié)論是否成立,并說明理由.

3)應(yīng)用:在(2)的情況下,連接BGDE,若AE1,AB2,求BG2+DE2的值(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的弦,于點(diǎn),過點(diǎn)的直線交的延長(zhǎng)線于點(diǎn).且

(1)求證:的切線.

(2)的半徑為, ,則的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=x+m2+k的圖象,其頂點(diǎn)坐標(biāo)為M1﹣4

1)求出圖象與x軸的交點(diǎn)A、B的坐標(biāo);

2)在二次函數(shù)的圖象上是否存在點(diǎn)P,使SPAB=SMAB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2+2x+3

(1)求函數(shù)圖象的頂點(diǎn)坐標(biāo),并畫出這個(gè)函數(shù)的圖象;

(2)根據(jù)圖象,直接寫出:

①當(dāng)函數(shù)值y0時(shí),自變量x的取值范圍;

②當(dāng)2<x<2時(shí),函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AEBE是△ABC的兩個(gè)內(nèi)角的平分線,過點(diǎn)AADAE.交BE的延長(zhǎng)線于點(diǎn)D.若ADABBEED12,則cosABC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接年中、日、韓三國(guó)青少年橄欖球比賽,南雅中學(xué)計(jì)劃對(duì)面積為運(yùn)動(dòng)場(chǎng)進(jìn)行塑膠改造.經(jīng)投標(biāo),由甲、乙兩個(gè)工程隊(duì)來完成,已知甲隊(duì)每天能改造的面積是乙隊(duì)每天能改造面積的倍,并且在獨(dú)立完成面積為的改造時(shí),甲隊(duì)比乙隊(duì)少用.

1)求甲、乙兩工程隊(duì)每天能完成塑膠改造的面積;

2)設(shè)甲工程隊(duì)施工天,乙工程隊(duì)施工天,剛好完成改造任務(wù),求的函數(shù)解析式;

3)若甲隊(duì)每天改造費(fèi)用是萬元,乙隊(duì)每天改造費(fèi)用是萬元,且甲、乙兩隊(duì)施工的總天數(shù)不超過天,如何安排甲、乙兩隊(duì)施工的天數(shù),使施工總費(fèi)用最低?并求出最低的費(fèi)用.

查看答案和解析>>

同步練習(xí)冊(cè)答案