【題目】如圖,∠BAC=30°,點 D 為∠BAC內(nèi)一點,點 E,F 分別是AB,AC上的動點.若AD=9,則△DEF周長的最小值為____.
【答案】9;
【解析】
由對稱的性質(zhì)可得:DE=EM,DF=FN,AM=AD=AN=9,∠MAE=∠DAE,∠NAF=∠DAF,然后根據(jù)兩點之間線段最短可得此時MN即為△DEF的周長的最小值,然后根據(jù)等邊三角形的判定定理及定義即可求出結(jié)論.
解:過點D分別作AB、AC的對稱點M、N,連接MN分別交AB、AC于點E、F,連接DE、DF、AD、AM和AN
由對稱的性質(zhì)可得:DE=EM,DF=FN,AM=AD=AN=9,∠MAE=∠DAE,∠NAF=∠DAF
∴△DEF的周長=DE+EF+DF= EM+EF+FN=MN,∠MAE+∠NAF=∠DAE+∠DAF=∠BAC=30°
∴根據(jù)兩點之間線段最短,此時MN即為△DEF的周長的最小值,∠MAN=∠MAE+∠NAF+∠BAC=60°
∴△MAN為等邊三角形
∴MN=AM=AN=9
即△DEF周長的最小值為9
故答案為:9.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一動點從原點O出發(fā),按向上.向右.向下.向右的方向依次平移,每次移動一個單位,得到點A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么點A2016的坐標為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,∠B=30°,BC邊上有一點P(不與點B,C重合),I為△APC的內(nèi)心,若∠AIC的取值范圍為m°<∠AIC<n°,則m+n=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司欲招聘一名部門經(jīng)理,對甲、乙、丙三名候選人進行了三項素質(zhì)測試.各項測試成績?nèi)绫砀袼荆?/span>
測試項目 | 測試成績 | ||
甲 | 乙 | 丙 | |
專業(yè)知識 | 74 | 87 | 90 |
語言能力 | 58 | 74 | 70 |
綜合素質(zhì) | 87 | 43 | 50 |
(1)根據(jù)實際需要,公司將專業(yè)知識、語言能力和綜合素質(zhì)三項測試得分按4:3:1的比例確定每個人的測試總成績,此時誰將被錄用?
(2)請重新設(shè)計專業(yè)知識、語言能力和綜合素質(zhì)三項測試得分的比例來確定每個人的測試總成績,使得乙被錄用,若重新設(shè)計的比例為x:y:1,且x+y+1=10,則x= ,y= .(寫出x與y的一組整數(shù)值即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,C為⊙O上一點,CD⊥AB于D,AD=9,BD=4,以C為圓心,CD為半徑的圓與⊙O相交于P,Q兩點,弦PQ交CD于E,則PEEQ的值是( )
A. 24 B. 9 C. 36 D. 27
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠C=90°,∠BAC=30°,點D為邊BC上的點,連接AD,∠BAD=α,點D關(guān)于AB的對稱點為E,點E關(guān)于AC的對稱點為G,線段EG交AB于點F,連接AE,DE,DG,AG.
(1)依題意補全圖形;
(2)求∠AGE的度數(shù)(用含α的式子表示);
(3)猜想:線段EG與EF,AF之間是否存在一個數(shù)量關(guān)系?若存在,請寫出這個數(shù)量關(guān)系并證明;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一塊三角形土地,它的底邊BC=100米,高AH=80米,某單位要沿著地邊BC修一座底面是矩形DEFG的大樓,D、G分別在AB、AC的邊上,問當這個矩形面積最大時,它的長與寬各是多少米?面積最大為多少平方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=,BD=2,求OE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com