如圖14-3-13,已知在△ABC中,AB=AC,D為AB上一點(diǎn),且AD=CD=BC,則∠B=________,∠ACD=________.若點(diǎn)D到BC的距離為1 cm,那么點(diǎn)D到AC的距離為_(kāi)_______.

答案:
解析:

72° 36° 1cm


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:044

(1)如圖14-2-13(甲)所示編號(hào)為①②③④的四個(gè)三角形中,關(guān)于y軸對(duì)稱的兩個(gè)三角形的編號(hào)為_(kāi)____________;

(2)在圖14-2-13(乙)中,畫(huà)出與△ABC關(guān)于x軸對(duì)稱的△A1B1C1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(遼寧大連卷)數(shù)學(xué) 題型:解答題

(11·大連)(本題12分)在△ABC中,∠A=90°,點(diǎn)D在線段BC上,∠EDB
∠C,BE⊥DE,垂足為E,DE與AB相交于點(diǎn)F.
(1)當(dāng)AB=AC時(shí),(如圖13),
① ∠EBF=_______°;
② 探究線段BE與FD的數(shù)量關(guān)系,并加以證明;
(2)當(dāng)AB=kAC時(shí)(如圖14),求的值(用含k的式子表示).
  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(福建洛江區(qū)卷)數(shù)學(xué) 題型:解答題

(9分)如圖13,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為(1,4),交x軸于A、B,交y軸于D,其中B點(diǎn)的坐標(biāo)為(3,0)

(1)求拋物線的解析式

(2)如圖14,過(guò)點(diǎn)A的直線與拋物線交于點(diǎn)E,交y軸于點(diǎn)F,其中E點(diǎn)的橫坐標(biāo)為2,若直線PQ為拋物線的對(duì)稱軸,點(diǎn)G為PQ上一動(dòng)點(diǎn),則x軸上是否存在一點(diǎn)H,使D、G、F、H四點(diǎn)圍成的四邊形周長(zhǎng)最小.若存在,求出這個(gè)最小值及G、H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(3)如圖15,拋物線上是否存在一點(diǎn)T,過(guò)點(diǎn)T作x的垂線,垂足為M,過(guò)點(diǎn)M作直線MN∥BD,交線段AD于點(diǎn)N,連接MD,使△DNM∽△BMD,若存在,求出點(diǎn)T的坐標(biāo);若不存在,說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(湖南永州卷)數(shù)學(xué) 題型:解答題

(11·大連)(本題12分)在△ABC中,∠A=90°,點(diǎn)D在線段BC上,∠EDB

∠C,BE⊥DE,垂足為E,DE與AB相交于點(diǎn)F.

(1)當(dāng)AB=AC時(shí),(如圖13),

① ∠EBF=_______°;

② 探究線段BE與FD的數(shù)量關(guān)系,并加以證明;

(2)當(dāng)AB=kAC時(shí)(如圖14),求的值(用含k的式子表示).

 

  

 

查看答案和解析>>

同步練習(xí)冊(cè)答案