【題目】如圖:在ABC中,∠ACB 90°,點(diǎn)D在邊AB上,ADAC,點(diǎn)EBC邊上,CEBD,過點(diǎn)EEFCDAB于點(diǎn)F,若AF2,BC8,則DF的長為_______

【答案】4

【解析】

延長AC至點(diǎn)G,使AG=AB,延長EF、CA交于H,根據(jù)題意證明△CEHCGB,即可得到DF=AD-AF=AC-AH=CH-2AF=BC-2AF,即可求解.

設(shè)∠BCD=a,∠ACB=90°∴∠ACD=90°-a,∵AD=AC,∴∠ADC=ACD=90°-a,∴∠CAB=2a,∴∠ABC=90°-2a,

∵EF⊥CD,∴∠DKF=90°,∴∠DFK=a,∴∠CEF=90°-a,

延長AC至點(diǎn)G,使AG=AB,連接BG,∠G=90°-a=∠CEF

AC=AD,BD=CG=CE,

延長EF、CA交于H

∴∠H=a=BFE=AFH,

AH=AF=2

∠ACB=∠BCG=90°,CG=CE∠G=∠CEF

∴△CEHCGB

BC=CH=8

DF=AD-AF=AC-AH=CH-2AF=BC-2AF=4.

故填:4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)一批 30 瓦的 LED 燈泡和普通白熾燈泡進(jìn)行銷售,其進(jìn)價(jià)與標(biāo)價(jià)如下表:

LED 燈泡

普通白熾燈泡

進(jìn)價(jià)(元)

45

25

標(biāo)價(jià)(元)

60

30

(1)該商場購進(jìn)了 LED 燈泡與普通白熾燈泡共 300 個(gè),LED 燈泡按標(biāo)價(jià)進(jìn)行銷售,而普通 白熾燈泡打九折銷售,當(dāng)銷售完這批燈泡后可獲利 3 200 元,求該商場購進(jìn) LED 燈泡與 普通白熾燈泡的數(shù)量分別為多少個(gè)?

(2)由于春節(jié)期間熱銷,很快將兩種燈泡銷售完,若該商場計(jì)劃再次購進(jìn)這兩種燈泡 120 個(gè), 在不打折的情況下,請問如何進(jìn)貨,銷售完這批燈泡時(shí)獲利最多且不超過進(jìn)貨價(jià)的 30%, 并求出此時(shí)這批燈泡的總利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位在五月份準(zhǔn)備組織部分員工到背景旅游7天,現(xiàn)聯(lián)系了甲、乙兩家旅行社,兩家旅行社報(bào)價(jià)均為每人7天共2000天,兩家旅行社同時(shí)都對10人以上的團(tuán)體推出了優(yōu)惠舉措;甲旅行社對每位員工七五折優(yōu)惠;而乙旅行社是免去一位員工的費(fèi)用,其余員工八折優(yōu)惠.

1)如果設(shè)參加旅游的員工共有人,則甲旅行社的費(fèi)用為 元,乙旅行社的費(fèi)用為 元;(用含的式子表示,并化簡)

2)假如這個(gè)單位有20名員工參加旅游,該單位選擇哪一家旅行社比較合算?并說明理由.

3)假如這7天的日期之和為63的倍數(shù),則他們可能于五月幾號(hào)出發(fā)?(寫出所有符合條件的可能性,并寫出簡單的計(jì)算過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CDEF相交于點(diǎn)O,且∠AOC=90°,∠AOE=140°,

1)直線AB與直線______垂直,記作______;

2)直線AB與直線______斜交,夾角的大小為______;

3)直線_____與直線______夾角的大小為50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,在ABC中,∠ACB=90°,ACBC,直線l過點(diǎn)C,點(diǎn)A,B在直線l同側(cè),BDl,AEl,垂足分別為D,E.求證:AEC≌△CDB

(2)如圖2,AEAB,且AEABBCCD,且BCCD,利用(1)中的結(jié)論,請按照圖中所標(biāo)注的數(shù)據(jù)計(jì)算圖中實(shí)線所圍成的圖形的面積S=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(-44),B(-3,1),C(12)。

1)將ABC向右平移5個(gè)單位,得到A1B1C1,畫出圖形,并直接寫出A1的坐標(biāo);

2)作出A1B1C1關(guān)于x軸對稱的圖形A2B2C2,并直接寫出C2點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在坐標(biāo)平面內(nèi),點(diǎn)O是坐標(biāo)原點(diǎn),A06)、B20),且∠OBA60°,將OAB沿直線AB翻折,得到CAB,點(diǎn)O與點(diǎn)C對應(yīng)。

1)求點(diǎn)C的坐標(biāo);

2)動(dòng)點(diǎn)F從點(diǎn)O出發(fā),以2個(gè)單位長度/秒的速度沿折線O—A—C向終點(diǎn)C運(yùn)動(dòng),設(shè)FOB的面積為SS≠0),點(diǎn)F的運(yùn)動(dòng)時(shí)間為t秒,求St的關(guān)系式,并直接寫出t的取值范圍;

3)在(2)的條件下,過點(diǎn)Bx軸垂線,交AC于點(diǎn)E,在點(diǎn)F的運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),BEF是以BE為腰的等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=m,BC=n,將此矩形繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)θ(0°<θ<90°)得到矩形A1BC1D1,點(diǎn)A1在邊CD上.

(1)若m=2,n=1,求在旋轉(zhuǎn)過程中,點(diǎn)D到點(diǎn)D1所經(jīng)過路徑的長度;

(2)將矩形A1BC1D1繼續(xù)繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)得到矩形A2BC2D2,點(diǎn)D2BC的延長線上,設(shè)邊A2BCD交于點(diǎn)E,若=﹣1,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形OABC的邊長為2,點(diǎn)A在第一象限,點(diǎn)C在x軸正半軸上,AOC=60°,若將菱形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)75°,得到四邊形OA′B′C′,則點(diǎn)B的對應(yīng)點(diǎn)B′的坐標(biāo)為_____

查看答案和解析>>

同步練習(xí)冊答案