已知平行四邊形的一邊長(zhǎng)為,則對(duì)角線的長(zhǎng)度可能取下列數(shù)組中的(  )
A.B.、C.D.、
D
解:如圖,在平行四邊形ABCD中,AC交DB于O,

設(shè)CB=10,
∴OA=OC,OB=OD,
在△BOC中OB-OC<BC<OB+OC,
即OB-OC<10<OB+OC,
A、OC=2,OB=4,不符合不等式,故選項(xiàng)錯(cuò)誤;
B、OC=3,OB=4,不符合不等式,故選項(xiàng)錯(cuò)誤;
C、OC=4,OB=5,不符合不等式,故選項(xiàng)錯(cuò)誤;
D、OC=5.5,OB=6.5,符合不等式,故正確.
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在□ABCD中,∠A=70°,將□ABCD折疊,使點(diǎn)D、C分別落在點(diǎn)F、E處(點(diǎn)F、E都在直線AB所在的直線上),折痕為MN,則∠AMF等于(    )

A.70º           B.40º            C.30º            D.20º

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在□ABCD中,AB=7,AD=11,DE平分∠ADC,則BE=_      _.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在下列四組多邊形地板磚中:①正三角形與正方形;②正三角形與正六邊形;③正六邊形與正方形;④正八邊形與正方形.將每組中的兩種多邊形結(jié)合,能密鋪地面的是( 。
A.①③④B.②③④C.①②③D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知矩形的邊長(zhǎng).某一時(shí)刻,動(dòng)點(diǎn)點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,問:
(1)用含t的代數(shù)式表示AN=___________cm;
(2)當(dāng)t為何值時(shí),的面積等于矩形面積的
(2)是否存在時(shí)刻,使以為頂點(diǎn)的三角形與相似?若存在,求的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,AB∥DC,AD=BC,點(diǎn)E是CD延長(zhǎng)線上一點(diǎn),且AE∥BD.
(1)判斷四邊形ABDE是怎樣的四邊形,說明理由;
(2)△ACE是等腰三角形嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,等腰梯形ABCD中,AB∥DC,AC⊥BC,點(diǎn)E是AB的中點(diǎn), EC∥AD,則∠ABC等于         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長(zhǎng)線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°.
求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.
∵正方形ABCD中,∠B=90°,∠AMN­=90°
∴∠1=180°-∠AMN­-∠AMB =180°-∠B-∠AMB=∠2
(下面請(qǐng)你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

M、N分別是直角梯形ABCD兩腰AD,CB的中點(diǎn),DE⊥AB于點(diǎn)E,將△ADE沿DE翻折,M與N恰好重合,則AE:BE等于(   )
A.2:1B.1:2C.3:2D.2:3

查看答案和解析>>

同步練習(xí)冊(cè)答案