【題目】如圖,在Rt中,∠C=90°AC=BC,在線段CB延長(zhǎng)線上取一點(diǎn)P,AP為直角邊,點(diǎn)P為直角頂點(diǎn),在射線CB上方作等腰 Rt, 過(guò)點(diǎn)DDECB,垂足為點(diǎn)E

1 依題意補(bǔ)全圖形;

2 求證: AC=PE;

3 連接DB,并延長(zhǎng)交AC的延長(zhǎng)線于點(diǎn)F,用等式表示線段CFAC的數(shù)量關(guān)系,并證明.

【答案】1)見解析;(2)見解析;(3AC=CF,見解析

【解析】

1)根據(jù)描述作出圖形;

2)先證明ACP≌△DEP,根據(jù)全等的性質(zhì)即可得出結(jié)論;

3)根據(jù)(2)中全等得出PC=DE,再由線段間的轉(zhuǎn)化可得出PC=BE,故可得出DBE為等腰直角三角形,從而BCF也為等腰直角三角形,結(jié)論得證.

解:(1)依題意補(bǔ)全圖形;

2 證明:∵DECB, C=90°

∴∠DEP=C =90°,

∴∠3+2=90°

又∵∠APD =90°,

∴∠1+2=90°,

∴∠1=3

又∵AP=DP,

ACP≌△PED AAS),

AC=PE.

3 線段CFAC的數(shù)量關(guān)系是CF=AC.

ACP≌△PED,

PC=DE,

又∵AC=BC

BC=PE, PC=BE,

BE=DE

DBE為等腰直角三角形,

易證BCF為等腰直角三角形,

BC=CF,

AC=CF .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1ABD,ACE都是等邊三角形,

1)求證:ABE≌△ADC;

2)若∠ACD=15°,求∠AEB的度數(shù);

3)如圖2,當(dāng)ABDACE的位置發(fā)生變化,使C、ED三點(diǎn)在一條直線上,求證:ACBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,則下列5個(gè)代數(shù)式:ac,a+b+c,4a﹣2b+c,2a+b,2a﹣b,其值大于0的個(gè)數(shù)為( )

A.3 B.2 C.5 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,其對(duì)稱軸為直線x=1,有如下結(jié)論:

①c<1;

②2a+b=0;

③b2<4ac;

④若方程ax2+bx+c=0的兩根為x1,x2,則x1+x2=2.

其中正確的結(jié)論是(  )

A. ①② B. ①③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】工人師傅用一塊長(zhǎng)為10dm,寬為6dm的矩形鐵皮制作一個(gè)無(wú)蓋的長(zhǎng)方體容器,需要將四角各裁掉一個(gè)正方形.(厚度不計(jì))

(1)在圖中畫出裁剪示意圖,用實(shí)線表示裁剪線,虛線表示折痕;并求長(zhǎng)方體底面面積為12dm2時(shí),裁掉的正方形邊長(zhǎng)多大?

(2)若要求制作的長(zhǎng)方體的底面長(zhǎng)不大于底面寬的五倍,并將容器進(jìn)行防銹處理,側(cè)面每平方分米的費(fèi)用為0.5元,底面每平方分米的費(fèi)用為2元,裁掉的正方形邊長(zhǎng)多大時(shí),總費(fèi)用最低,最低為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知:如圖1,點(diǎn)A、D、CB在同一條直線上,ADBC,AEBF,CEDF,求證:AEBF

2)如圖2所示,ABC的頂點(diǎn)分別為A(﹣4,5),B(﹣32),C4,﹣1

①作出ABC關(guān)于x軸對(duì)稱的圖形A1B1C1;

②用三角板作出ABCAB邊上的高CH

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用四個(gè)螺絲將四條不可彎曲的木條圍成一個(gè)木框,不計(jì)螺絲大小,其中相鄰兩螺絲的距離依次為2、3、4、6,且相鄰兩木條的夾角均可調(diào)整.若調(diào)整木條的夾角時(shí)不破壞此木框,則任兩個(gè)螺絲間的距離的最大值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的兩條對(duì)角線相交于O,且AC平分∠DAB.

(1)求證:四邊形ABCD是菱形;

(2)若AC=8,BD=6,試求點(diǎn)O到AB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了豐富學(xué)生的校園生活,準(zhǔn)備購(gòu)進(jìn)一批籃球和足球.其中籃球的單價(jià)比足球的單價(jià)多40元,用1500元購(gòu)進(jìn)的籃球個(gè)數(shù)與900元購(gòu)進(jìn)的足球個(gè)數(shù)相等.

1)籃球和足球的單價(jià)各是多少元?

2)該校打算用1000元購(gòu)買籃球和足球,問恰好用完1000元,并且籃球、足球都買有的購(gòu)買方案有哪幾種?

查看答案和解析>>

同步練習(xí)冊(cè)答案