【題目】先填寫表,通過觀察后再回答問題:

a

0

0.0001

0.01

1

100

10000

0

0.01

x

1

y

100

1)表格中x   ,y   

2)從表格中探究a數(shù)位變化可以發(fā)現(xiàn):當被開方數(shù)a每擴大100倍時,擴大_________倍,請你利用這個規(guī)律解決下面兩個問題:

①已知,則   ;

②已,若,用含m的代數(shù)式表示n,則n   

3)請根據(jù)表格提示,試比較a的大。

【答案】10.110;(210; 24.5;10000m ;(3 a01時,a 0a1時,a a1時,a.

【解析】

1)由表格得出規(guī)律,求出xy的值即可;
2)根據(jù)得出的規(guī)律確定出所求即可;
3)分類討論a的范圍,比較大小即可.

(1)由表格可得:從左到右,后一個數(shù)是它前一個數(shù)的10倍,所以x=0.1,y=10;

(2) 當被開方數(shù)a每擴大100倍時,擴大10倍,

①根據(jù)題意得:,∴24.5;

②根據(jù)題意得:∵,∴n=10000m ;

(3) a=01時,=a
0a1時,a;
a1時,a,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某工廠去年底積壓產(chǎn)品a(a0),今年預計每月銷售產(chǎn)品2b(b0),同時每月可生產(chǎn)出產(chǎn)品b件,則產(chǎn)品積壓量y()與今年開工時間t()的關(guān)系的圖象應是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了打造區(qū)域中心城市,實現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設(shè)正按投資計劃有序推進.花城新區(qū)建設(shè)工程部,因道路建設(shè)需要開挖土石方,計劃每小時挖掘土石方540m3 現(xiàn)決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關(guān)信息如下表所示:

租金(單位:元/時)

挖掘土石方量(單位:m3/時)

甲型挖掘機

100

60

乙型挖掘機

120

80

1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?

2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有哪幾種不同的租用方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠ACB=90°,點D與點BAC同側(cè),∠DAC>∠BAC,且DA=DC,過點BBEDADC于點E,過EEMACAB于點M,連結(jié)MD.

1)當ADC=80°時,求∠CBE的度數(shù).

2)當ADC=α:

①求證:BE=CE.

②求證:ADM=CDM.

③當α為多少度時,DM=EM.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,A,B,C的對邊分別為a、b、c,下列說法中錯誤的是

A.如果CB=A,則ABC是直角三角形,且C=90;

B.如果,則ABC是直角三角形,且C=90;

C.如果(c+a)( c-a)=,則ABC是直角三角形,且C=90;

D.如果ABC325,則ABC是直角三角形,且C=90

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,Am,0)、Bm+1,0)、E2,0),其中-1≤m≤2,分別以AB、OE為邊向上作正方形ABCD、OEFG.

1)請直接寫出線段AB的長;

2)正方形ABCD沿x軸正半軸運動過程中與正方形OEFG重疊部分面積為S,求Sm的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:∠MON30°,點A1、A2、A3在射線ON上,點B1、B2、B3在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4均為等邊三角形,若OA11,則B6B7的邊長為(  )

A. 6 B. 12 C. 32 D. 64

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,每個小正方形的邊長為1個單位,每個小方格的頂點叫格點.

(1)畫出ABC向右平移4個單位后得到的A1B1C1;

(2)圖中ACA1C1的關(guān)系是: _____________.

(3)畫出ABCAB邊上的高CD;垂足是D;

(4)圖中ABC的面積是_______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知OM⊥ON,斜邊長為4的等腰直角△ABC的斜邊AC在射線上,頂點C與O重合,若點A沿NO方向向O運動,△ABC的頂點C隨之沿OM方向運動,點A移動到點O為止,則直角頂點B運動的路徑長是

查看答案和解析>>

同步練習冊答案