25、已知如圖:在△ABC中,AD⊥BC于D,BE⊥AC于E,AD、BE相交于H,且BH=AC,連接CH并延長交AB于F,指出圖中所有度數(shù)為45°的角,并任選一個(gè)來證明.
分析:根據(jù)已知可得∠HBD+∠BHD=∠AHE+∠HAE=90°,因?yàn)椤螧HD=∠AHE,所以∠HBD=∠HAE,再利用AAS判定△BHD≌△ACD,得到DH=DC,根據(jù)等邊對等角得到∠DHC=∠HCD=45°.
解答:證明:∵AD⊥BC于D,BE⊥AC于E
∴∠BDH=∠ADC=90°
∠HBD+∠BHD=∠AHE+∠HAE=90°
∵∠BHD=∠AHE
∴∠HBD=∠HAE
∵BH=AC
∴△BHD≌△ACD
∴DH=DC
∵∠HDC=90°
∴∠DHC=∠HCD=45°
點(diǎn)評:此題主要考查了學(xué)生對全等三角形的判定及等腰三角形的判定的理解及運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、已知如圖:在△ABC中,AB=AC,D在BC上,且DE∥AC交AB于E,點(diǎn)F在AC上,且DF=DC.求證:
(1)△DCF∽△ABC;
(2)BD•DC=BE•CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•通州區(qū)一模)已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點(diǎn)B為中心,沿逆時(shí)針方向旋轉(zhuǎn)α度(0°<α<90°),得到△BDE,點(diǎn)B、A、E恰好在同一條直線上,連接CE.
(1)則四邊形DBCE是
形(填寫:平行四邊形、矩形、菱形、正方形、梯形)
(2)若AB=AC=1,BC=
3
,請你求出四邊形DBCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,在△ABC中,∠B=30°,∠C=45°,AB-AC=2-
2
,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,在△ABC中,∠C=60°,AB=2
7
,AC=4,AD是邊BC上的高,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,在△ABC中,AD平分∠BAC交BC于D,E為AD延長線上一點(diǎn)且∠ACE=∠B.求證:CD=CE.

查看答案和解析>>

同步練習(xí)冊答案