(2007•太原)如圖,正方形ABCD的邊長為cm,對角線AC,BD相交于點O,過O作OD1⊥AB于D1,過D1作D1D2⊥BD于點D2,過D2作D2D3⊥AB于D3,…,依此類推.其中的OD1+D2D3+D4D5+D6D7=    cm.
【答案】分析:根據(jù)正方形的對角線互相垂直平分,知OD1是△ABD的中位線,結(jié)合三角形中位線定理可得OD1=8,依此類推,運用三角形的中位線定理,可得D2D3、D4D5、D6D7=的值;相加可得OD1+D2D3+D4D5+D6D7的值.
解答:解:正方形ABCD的邊長為cm,對角線AC,BD相交于點O,
故OD1是△ABD的中位線,即OD1=8,
依此類推,可得D2D3=4,D4D5=2,D6D7=
進而可得OD1+D2D3+D4D5+D6D7=15
故答案為15
點評:重點運用了三角形的中位線定理:三角形的中位線是三角形的第三邊的一半.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•太原)如圖,在平面直角坐標系中,?ABCO的頂點O在原點,點A的坐標為(-2,0),點B的坐標為(0,2),點C在第一象限.
(1)直接寫出點C的坐標;
(2)將?ABCO繞點O逆時針旋轉(zhuǎn),使OC落在y軸的正半軸上,如圖②,得□DEFG(點D與點O重合).FG與邊AB、x軸分別交于點Q、點P.設(shè)此時旋轉(zhuǎn)前后兩個平行四邊形重疊部分的面積為S,求S的值;
(3)若將(2)中得到的?DEFG沿x軸正方向平移,在移動的過程中,設(shè)動點D的坐標為(t,0),?DEFG與?ABCO重疊部分的面積為S.寫出S與t(0<t≤2)的函數(shù)關(guān)系式.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年上海市徐匯區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2007•太原)如圖①,在等腰梯形ABCD中,AB∥CD,E、F是邊AB上的兩點,且AE=BF,DE與CF相交于梯形ABDC內(nèi)一點O.
(1)求證:OE=OF;
(2)如圖②,當EF=CD時,請你連接DF、CE,判斷四邊形DCEF是什么樣的四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學試卷(邱海燕)(解析版) 題型:解答題

(2007•太原)如圖,有兩個可以自由轉(zhuǎn)動的均勻轉(zhuǎn)盤,轉(zhuǎn)盤A被分成面積相等的三個扇形,轉(zhuǎn)盤B被分成面積相等的四個扇形,每個扇形內(nèi)都涂有顏色.同時轉(zhuǎn)動兩個轉(zhuǎn)盤,停止轉(zhuǎn)動后,若一個轉(zhuǎn)盤的指針指向紅色,另一個轉(zhuǎn)盤的指針指向藍色,則配成紫色;若其中一個指針指向分界線時,需重新轉(zhuǎn)動兩個轉(zhuǎn)盤.
(1)用列表或畫樹狀圖的方法,求同時轉(zhuǎn)動一次轉(zhuǎn)盤A、B配成紫色的概率;
(2)小強和小麗要用這兩個轉(zhuǎn)盤做游戲,他們想出如下兩種游戲規(guī)則:
①轉(zhuǎn)動兩個轉(zhuǎn)盤,停止后配成紫色,小強獲勝;否則小麗獲勝;
②轉(zhuǎn)動兩個轉(zhuǎn)盤,停止后指針都指向紅色,小強獲勝;指針都指向藍色,小麗獲勝.
判斷以上兩種規(guī)則的公平性,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008-2009學年江蘇省揚州市儀征市大儀中學九年級(下)第一次月考數(shù)學試卷(解析版) 題型:解答題

(2007•太原)如圖①,在等腰梯形ABCD中,AB∥CD,E、F是邊AB上的兩點,且AE=BF,DE與CF相交于梯形ABDC內(nèi)一點O.
(1)求證:OE=OF;
(2)如圖②,當EF=CD時,請你連接DF、CE,判斷四邊形DCEF是什么樣的四邊形,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案