【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=,AD=2cm,AB=4cm,BC=6cm,點E是CD中點,過點B畫射線BF交CD于點F,交AD延長線于點G,且∠GBE=∠CBE,則線段DG的長為__cm.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知A(0,6),B(2,0),C(6,0),D為線段BC上的動點,以AD為邊向右側作正方形ADEF,連接CF交DE于點P,則CP的最大值_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC.在平面內任取一點D,連結AD(AD<AB),將線段AD繞點A逆時針旋轉90°,得到線段AE,連結DE,CE,BD.
(1)直線BD和CE的位置關系是 ;
(2)猜測BD和CE的數(shù)量關系并證明;
(3)設直線BD,CE交于點P,把△ADE繞點A旋轉,當∠EAC=90°,AB=2,AD=1時,直接寫出PB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:有一組鄰邊相等且對角互補的四邊形叫做等補四邊形.
(問題理解)
(1)如圖1,點A、B、C在⊙O上,∠ABC的平分線交⊙O于點D,連接AD、CD.
求證:四邊形ABCD是等補四邊形;
(拓展探究)
(2)如圖2,在等補四邊形ABCD中,AB=AD,連接AC,AC是否平分∠BCD?請說明理由;
(升華運用)
(3)如圖3,在等補四邊形ABCD中,AB=AD,其外角∠EAD的平分線交CD的延長線于點F.若CD=6,DF=2,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c(b,c是常數(shù))的圖象經(jīng)過點(1,﹣1).
(1)用含b的代數(shù)式表示c.
(2)求二次函數(shù)圖象的頂點縱坐標的最大值,并寫出此時二次函數(shù)的表達式.
(3)垂直于y軸的直線與(2)中所得的二次函數(shù)圖象交于(x1,y1)和(x2,y2),與一次函數(shù)y=﹣x+2的圖象交于(x3,y3),若x1<x2<x3,求x1+x2+x3的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道求函數(shù)圖象的交點坐標,可以聯(lián)立兩個函數(shù)解析式組成方程組,方程組的解就是交點的坐標.如:求直線y=2x+3與y=﹣x+6的交點坐標,我們可以聯(lián)立兩個解析式得到方程組,解得,所以直線y=2x+3與y=﹣x+6的交點坐標為(1,5).請利用上述知識解決下列問題:
(1)已知直線y=kx﹣2和拋物線y=x2﹣2x+3,
①當k=4時,求直線與拋物線的交點坐標;
②當k為何值時,直線與拋物線只有一個交點?
(2)已知點A(a,0)是x軸上的動點,B(0,4),以AB為邊在AB右側做正方形ABCD,當正方形ABCD的邊與反比例函數(shù)y=的圖象有4個交點時,試求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2020年新冠肺炎爆發(fā),省疾控中心組織醫(yī)護人員和防疫藥品趕赴湖北救援,裝載防疫藥品的貨運飛機從機場出發(fā),以600千米/小時的速度飛行,半小時后醫(yī)護人員乘坐客運飛機從同一個機場出發(fā),客運飛機速度是貨運飛機速度的1.2倍,結果客運飛機比裝載防疫藥品的貨運飛機遲15分鐘到達湖北.
(1)設貨運飛機全程飛行時間為t小時,用t表示出發(fā)的機場到湖北的路程s;
(2)求出發(fā)的機場到湖北的路程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y=.
(1)若該反比例函數(shù)的圖象與直線y=kx+4(k≠0)只有一個公共點,求k的值;
(2)如圖,反比例函數(shù)y= (1≤x≤4)的圖象記為曲線C1,將C1向左平移2個單位長度,得曲線C2,請在圖中畫出C2,并直接寫出C1平移到C2處所掃過的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2010河南23題)在平面直角坐標系中,已知拋物線經(jīng)過,,三點.
(1)求拋物線的解析式;
(2)若點M為第三象限內拋物線上一動點,點M的橫坐標為m,的面積為S.求S關于m的函數(shù)關系式,并求出S的最大值;
(3)若點P是拋物線上的動點,點Q是直線上的動點,判斷有幾個位置能使以點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com