【題目】博物館作為征集、典藏、陳列和研究代表自然和人類文化遺產(chǎn)實物的場所,其存在的目的是為公眾提供知識、教育及欣賞服務.近年來,人們到博物館學習參觀的熱情越來越高.2012-2018年我國博物館參觀人數(shù)統(tǒng)計如下:

小明研究了這個統(tǒng)計圖,得出四個結論:2012年到2018年,我國博物館參觀人數(shù)持續(xù)增長;②2019年末我國博物館參觀人數(shù)估計將達到10.82億人次;③2012年到2018年,我國博物館參觀人數(shù)年增幅最大的是2017年;④2016年到2018年,我國博物館參觀人數(shù)平均年增長率超過10.其中正確的是(

A.①③B.①②③C.①②④D.①②③④

【答案】A

【解析】

根據(jù)條形統(tǒng)計圖中的信息對4個結論進行判斷即可.

由條形統(tǒng)計圖可知,從2012年到2018年,博物館參觀人數(shù)呈現(xiàn)持續(xù)增長態(tài)勢,故①正確;

2012年到2018年增加了10.08-5.64=4.44(億人次),平均每年增加4.44÷6=0.74(億人次)

2019年將會達到10.08+0.74=10.82(億人次),故②正確;

2013年增加了6.34-5.64=0.7(億人次),2014年增加了7.18-6.34=0.84(億人次),2015年增加了7.81-7.18=0.63(億人次),2016年增加了8.50-7.81=0.69(億人次),2017年增加了9.72-8.50=1.22(億人次),2018年增加了10.08-9.72=0.36(億人次),則2017年增幅最大,故③正確;

設從2016年到2018年年平均增長率為x,則8.501+x2=10.08

解得x0.09(負值已舍),即年平均增長約為9%,故④錯誤;

綜上可得正確的是①②③.

故選:B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,O為菱形ABCD的對稱中心,已知C20),D0﹣1),N為線段CD上一點(不與C、D重合).

1)求以C為頂點,且經(jīng)過點D的拋物線解析式;

2)設N關于BD的對稱點為N1,N關于BC的對稱點為N2,求證:△N1BN2∽△ABC;

3)求(2)中N1N2的最小值;

4)過點Ny軸的平行線交(1)中的拋物線于點P,點Q為直線AB上的一個動點,且∠PQA=∠BAC,求當PQ最小時點Q坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y=x-3與反比例函數(shù)y=的圖象相交于點A4,n),與x軸相交于點B

1)填空:n的值為 ,k的值為 ;

2)以AB為邊作菱形ABCD,使點Cx軸正半軸上,點D在第一象限,求點D的坐標;

3)觀察反比函數(shù)y=的圖象,當y≥-2時,請直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司計劃購買A、B兩種計算器共100個,要求A種計算器數(shù)量不低于B種的,且不高于B種的.已知A、B兩種計算器的單價分別是150/個、100/個,設購買A種計算器x個.

1)求計劃購買這兩種計算器所需費用y(元)與x的函數(shù)關系式;

2)問該公司按計劃購買者兩種計算器有多少種方案?

3)由于市場行情波動,實際購買時,A種計算器單價下調(diào)了3mm0)元/個,同時B種計算器單價上調(diào)了2m/個,此時購買這兩種計算器所需最少費用為12150元,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算(寫出計算過程)

1(-35) + 18 + (-5) + (+22)

2

3

4

5

695×(3)(2)2÷4

7(-22)×(-3)2+(-32)÷4;

8)﹣32+1÷4×|1(﹣0.52

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場統(tǒng)計了今年15A,B兩種品牌冰箱的銷售情況,并將獲得的數(shù)據(jù)繪制成折線統(tǒng)計圖

1)該商場這段時間內(nèi)A.B兩種品牌冰箱月銷售量的中位數(shù)分別為 , ;

2)計算兩種品牌月銷售量的方差,比較并說明該商場15月這兩種品牌冰箱月銷售量的穩(wěn)定性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初一(1)班針對你最喜愛的課外活動項目對全班學生進行調(diào)查(每名學生分別選一個活動項目),并根據(jù)調(diào)查結果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.

根據(jù)以上信息解決下列問題:

(1) , ;

(2)扇形統(tǒng)計圖中機器人項目所對應扇形的圓心角度數(shù)為 ;

(3)從選航模項目的名學生中隨機選取名學生參加學校航模興趣小組訓練,請用列舉法(畫樹狀圖或列表)求所選取的名學生中恰好有名男生、名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖本題圖①,在等腰Rt中, ,,為線段上一點,以為半徑作于點,連接,線段、、的中點分別為、.

(1)試探究是什么特殊三角形?說明理由;

(2)將繞點逆時針方向旋轉到圖②的位置,上述結論是否成立?并證明結論;

(3),繞點在平面內(nèi)自由旋轉,求的面積y的最大值與最小值的差.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)操作發(fā)現(xiàn):如圖1,在矩形ABCD中,EBC的中點,將△ABE沿AE折疊后得到△AFE,點F在矩形ABCD內(nèi)部,延長AFCD于點G.猜想線段GFGC有何數(shù)量關系?并證明你的結論.

2)簡單應用:在(1)中,如果AB4,AD6,求DG的長;

3)類比探究:如圖2,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結論是否仍然成立?請說明理由.

查看答案和解析>>

同步練習冊答案