三角形內角和定理的證明.

已知:如圖所示,E是BC上一點,DE∥AC,EF∥AB.

求證:∠A+∠B+∠C=

證明:∵DE∥AC(已知),

∴∠A=________,∠C=________(      ).

∵EF∥AB(已知),

∴________=∠DEF(      ),

 ∠B=______(      ).

∴∠A=∠DEF(      ).

∵BEC是直線(已知),

∴∠BEC=(      ),

即∠DEF+∠FEC+∠DEB=

∴∠A+∠B+∠C=(      ).

答案:
解析:

∠BDE,∠BED,兩直線平行,同位角相等,∠EDB,兩直線平行,內錯角相等,∠CEF,兩直線平行,同位角相等,等量代換,平角定義,等量代換


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

請閱讀下面材料,并回答所提出的問題.
三角形內角平分線性質定理:三角形的內角平分線分對邊所得的兩條線段和這個角的兩邊對應成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:
BD
DC
=
AB
AC

分析:要證
BD
DC
=
AB
AC
,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式
BD
DC
=
AB
AC
中,AC恰是BD、DC、AB的第四比例項,所以考慮過C作C精英家教網E∥AD,交BA的延長線于E,從而得到BD、DC、AB的第四比例項AE,這樣,證明
BD
DC
=
AB
AC
就可以轉化成證AE=AC.
證明:過C作CE∥DA,交BA的延長線于E.
CE∥DA?
∠1=∠E
∠2=∠3
∠1=∠2
?∠E=∠3?AE=AC
,
CE∥DA?
BD
DC
=
BA
AE
AE=AC
?
BD
DC
=
AB
AC

(1)上述證明過程中,用到了哪些定理?(寫對兩個定理即可)
(2)在上述分析、證明過程中,主要用到了下列三種數(shù)學思想的哪一種?選出一個填在后面的括號內.精英家教網[]
①數(shù)形結合思想;
②轉化思想;
③分類討論思想.
(3)用三角形內角平分線性質定理解答問題:
已知:如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BC=7cm.求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

說理,填空(在括號中填上相應的依據)
已知:l1∥l2,∠CAB=∠CBA,∠ACB=∠CDE
求證:AB平分∠CAF;∠1=∠2.
證明如下:
∵l1∥l2(已知)
∴∠CBA=∠3(
兩直線平行,內錯角相等
兩直線平行,內錯角相等

∵∠CAB=∠CBA(已知)
∴∠3=∠CAB
∴AB平分∠CAF(
角平分線定義
角平分線定義

∵l1∥l2(已知)
∴∠ACB=∠4(
兩直線平行,內錯角相等
兩直線平行,內錯角相等

又∵∠ACB=∠CDE(已知)
∴∠4=∠CDE(
等量代換
等量代換

又∵∠4+∠1+∠AOE=180°
∠2+∠CDE+∠DOC=180°(
三角形內角和定理
三角形內角和定理

∴∠4+∠1+∠AOE=∠2+∠CDE+∠DOC(
等量代換
等量代換

∵∠4=∠CDE(已證),∠AOE=∠DOC(
已證
已證

∴∠1=∠2.

查看答案和解析>>

科目:初中數(shù)學 來源:中學學習一本通 數(shù)學八年級下冊 北師大新課標 題型:044

由“三角形內角和定理”可證得:三角形兩內角的平分線相交所成的鈍角等于加上第三個角的一半.如圖所示,△ABC中,若BD,CD分別是它的角平分線,則∠BDC=∠A

(1)

如圖所示,若BD,CD是△ABC兩外角的平分線,試證明∠BDC=∠A

(2)

如圖所示,若BD,CD分別是△ABC一內角和一外角的平分線,試證:∠D=∠A

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2000•山西)請閱讀下面材料,并回答所提出的問題.
三角形內角平分線性質定理:三角形的內角平分線分對邊所得的兩條線段和這個角的兩邊對應成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:
分析:要證,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式中,AC恰是BD、DC、AB的第四比例項,所以考慮過C作CE∥AD,交BA的延長線于E,從而得到BD、DC、AB的第四比例項AE,這樣,證明就可以轉化成證AE=AC.
證明:過C作CE∥DA,交BA的延長線于E.
CE∥DA,
CE∥DA
(1)上述證明過程中,用到了哪些定理?(寫對兩個定理即可)
(2)在上述分析、證明過程中,主要用到了下列三種數(shù)學思想的哪一種?選出一個填在后面的括號內.[]
①數(shù)形結合思想;
②轉化思想;
③分類討論思想.
(3)用三角形內角平分線性質定理解答問題:
已知:如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BC=7cm.求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《三角形》(05)(解析版) 題型:解答題

(2000•山西)請閱讀下面材料,并回答所提出的問題.
三角形內角平分線性質定理:三角形的內角平分線分對邊所得的兩條線段和這個角的兩邊對應成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:
分析:要證,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現(xiàn)在B、D、C在一直線上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式中,AC恰是BD、DC、AB的第四比例項,所以考慮過C作CE∥AD,交BA的延長線于E,從而得到BD、DC、AB的第四比例項AE,這樣,證明就可以轉化成證AE=AC.
證明:過C作CE∥DA,交BA的延長線于E.
CE∥DA
CE∥DA
(1)上述證明過程中,用到了哪些定理?(寫對兩個定理即可)
(2)在上述分析、證明過程中,主要用到了下列三種數(shù)學思想的哪一種?選出一個填在后面的括號內.[]
①數(shù)形結合思想;
②轉化思想;
③分類討論思想.
(3)用三角形內角平分線性質定理解答問題:
已知:如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BC=7cm.求BD的長.

查看答案和解析>>

同步練習冊答案