精英家教網 > 初中數學 > 題目詳情

如圖,已知拋物線C1的頂點為P, 與x軸相交于A、B兩點(點A在點B的左側),點B 的橫坐標是1.

(1)求a的值;
(2)如圖,拋物線C2與拋物線C1關于x軸對稱,將拋物 線C2向右平移,平移后的拋物線記為C3,拋物線
C的頂點為M,當點P、M關于點O成中心對稱時,求拋物線C3的解析式.

(1) (2)

解析試題分析:(1)∵ 點B是拋物線與x軸的交點,橫坐標是1,∴ 點B的坐標為(1,0),∴ 當x=1時,.∴
(2)設拋物線C3解析式為,∵ 拋物線C2C1關于x軸對稱,且C3C2向右平移得到,∴ .∵ 點P、M關于點O對稱,且點P的坐標為(―2,―5),∴ 點M的坐標為(2,5).∴ 拋物線C3的解析式為
考點:拋物線的解析式、平移問題
點評:本題難度一般,第一問較為簡單通過拋物線上的點反代入拋物線的解析式,可以求得未知系數和;第二問稍微難一點,C1和C2關于x軸對稱,即兩個函數中的二次項系數互為相反數,C2和C3兩個函數二次項系數相同,題目中的P點坐標已知,即可求出M點坐標,代入C3的解析式頂點式,即可求出

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知拋物線C1:y=a(x+2)2-5的頂點為P,與x軸相交于A、B兩點(點A在點B的左邊),點B的橫坐標是1.
(1)求P點坐標及a的值;
(2)如圖(1),拋物線C2與拋物線C1關于x軸對稱,將拋物線C2向右平移,平移后的拋物線記為C3,C3的頂點為M,當點P、M關于點B成中心對稱時,求C3的解析式;
(3)如圖(2),點Q是x軸正半軸上一點,將拋物線C1繞點Q旋轉180°后得到拋物線C4.拋物線C4的頂點為N,與x軸相交于E、F兩點(點E在點F的左邊),當以點P、N、F為頂點的三角形是直角三角形時,求點Q的坐標.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線C1:y=a(x-2)2-5的頂點為P,與x軸相交于A、B兩點(點A在點B的左邊),點A的橫坐標是-1.
(1)求P點坐標及a的值;
(2)如圖(1),拋物線C2與拋物線C1關于x軸對稱,將拋物線C2向左平移,平移后的拋物線記為C3,C3的頂點為M,當點P、M關于點A成中心對稱時,求C3的解析式y(tǒng)=a(x-h)2+k;
(3)如圖(2),點Q是x軸負半軸上一動點,將拋物線C1繞點Q旋轉180°后得到拋物線C4.拋物線C4的頂點為N,與x軸相交于E、F兩點(點E在點F的左邊),當以點P、N、E為頂點的三角形是直角三角形時,求頂點N的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線c1:y=-
14
x2+bx+c
與x軸交于點A、B(點A在B的左側),與y軸交于點C,拋物線c2與拋物線c1關于y軸對稱,點A、B的對稱點分別是E、D,連接CD、CB,設AD=m.
(1)拋物線c2可以看成拋物線c1向右平移
m
m
個單位得到.
(2)若m=2,求b的值.
(3)將△CDB沿直線BC折疊,點D的對應點為G,且四邊形CDBG是平行四邊形,
①△CDB為
等邊
等邊
三角形(按邊分);
②若點G恰好落在拋物線c2上,求m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線C1:y=a(x+2)2-5的頂點為P,與x軸相交于A、B兩點(點A在點B精英家教網的左側),點B的橫坐標是1;
(1)求a的值;
(2)如圖,拋物線C2與拋物線C1關于x軸對稱,將拋物線C2向右平移,平移后的拋物線記為C3,拋物線C3的頂點為M,當點P、M關于點O成中心對稱時,求拋物線C3的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線C1y=
12
x2
,把它平移后得拋物線C2,使C2經過點A(0,8),且與拋物線C1交于點B(2,n).在x軸上有一點P,從原點O出發(fā)以每秒1個單位的速度沿x軸正半軸的方向移動,設點P移動的時間為t秒,過點P作x軸的垂線l,分別交拋物線C1、C2于E、D,當直線l經過點B前停止運動,以DE為邊在直線l左側畫正方形DEFG.
(1)判斷拋物線C2的頂點是否在x軸上,并說明理由;
(2)當t為何值時,正方形DEFG在y軸右側的部分的面積S有最大值?最大值為多少?
(3)設M為正方形DEFG的對稱中心.當t為何值時,△MOP為等腰三角形?

查看答案和解析>>

同步練習冊答案