【題目】如圖,在四邊形ABCD中,∠BAD=130°,∠B=D=90°,在BC,CD上分別找一點M,N,使三角形AMN周長最小時,則∠MAN的度數(shù)為_________.

【答案】80°

【解析】

延長AB,使得B=AB,延長AD,使得DA=D,連接、BCCD分別交于點MN,此時 AMN周長最小,然后因為∠AMN=BAD(BAM+∠DAN),之后推出∠BAM+∠DAN的值從而得出答案。

如圖,延長AB,使得B=AB,延長AD,使得DA=D,連接、BC、CD分別交于點M、N

∵∠ABC=ADC=90°

A關于BC對稱;A關于CD對稱

此時AMN周長最小

BA=B,MBAB

MA=M

同理:NA=N

∴∠=AM,

∵∠+∠+∠BAD=180°,且∠BAD=130°

∴∠+∠=50°

∴∠BAM+∠DAN=50°

∴∠MAN=BAD(BAM+∠DAN)=130°50°=80°

所以答案為80°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角中, ,點的中點,且AC=3,將一塊直角三角板的直角頂點放在點處,始終保持該直角三角板的兩直角邊分別與、相交,交點分別為、,則___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】都是等腰直角三角形,

1)如圖1,點、分別在、上,則、滿足怎樣的數(shù)量關系和位置關系?(直接寫出答案)

2)如圖2,點內部,點外部,連結、,則、滿足怎樣的數(shù)量關系和位置關系?請說明理由.

3)如圖3,點、都在外部,連結、、、,相交于點.已知,,設,,求之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩地相距千米,甲、乙兩人都從地去地,圖中分別表示甲、乙兩人所走路程(千米)與時間(小時)之間的關系,下列說法: ①乙晚出發(fā)小時;②乙出發(fā)小時后追上甲;③甲的速度是千米/小時; ④乙先到達.其中正確的是__________(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10分)

由于霧霾天氣頻發(fā),市場上防護口罩出現(xiàn)熱銷.某藥店準備購進一批口罩,已知1個A型口罩和3個B型口罩共需26元;3個A型口罩和2個B型口罩共需29元.

求一個A型口罩和一個B型口罩的售價各是多少元?

藥店準備購進這兩種型號的口罩共50個,其中A型口罩數(shù)量不少于35個,且不多于B型口罩的3倍,有哪幾種購買方案,哪種方案最省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)值y的部分對應值如下表:

x

﹣1

0

1

2

3

y

﹣1

﹣2

根據(jù)表格中的信息,完成下列各題

(1)當x=3時,y=________;

(2)當x=_____時,y有最________值為________;

(3)若點Ax1,y1)、Bx2,y2)是該二次函數(shù)圖象上的兩點,且﹣1<x1<0,1<x2<2,試比較兩函數(shù)值的大小:y1________y2 ;

(4)若自變量x的取值范圍是0≤x≤5,則函數(shù)值y的取值范圍是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料,解答問題.

例:用圖象法解一元二次不等式:x2﹣2x﹣3>0

解:設y=x2﹣2x﹣3,則yx的二次函數(shù).∵a=1>0,∴拋物線開口向上.

又∵當y=0時,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.

∴由此得拋物線y=x2﹣2x﹣3的大致圖象如圖所示.

觀察函數(shù)圖象可知:當x<﹣1x>3時,y>0.

x2﹣2x﹣3>0的解集是:x<﹣1x>3.

(1)觀察圖象,直接寫出一元二次不等式:x2﹣2x﹣3>0的解集是 ________;

(2)仿照上例,用圖象法解一元二次不等式:x2﹣1>0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點P到封閉圖形F極差距離”D(PW)定義如下:任取圖形W上一點Q,記PQ長度的最大值為M,最小值為m(PQ重合,則PQ0),則極差距離”D(P,W)Mm.如圖,正方形ABCD的對角線交點恰與原點O重合,點A的坐標為(2,2)

(1)O到線段AB極差距離”D(O,AB)______.K(52)到線段AB極差距離”D(K,AB)______.

(2)記正方形ABCD為圖形W,點Px軸上,且極差距離”D(PW)2,求直線AP的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為正方形的邊的延長線上一動點,以為一邊做正方形,以為一頂點作正方形,的延長線上(提示:正方形四條邊相等,且四個內角為

1)若正方形的面積分別為,,則正方形的面積為 (直接寫結果).

2)過點的垂線交的平分線于點,連接,試探求在點運動過程中,的大小是否發(fā)生變化,并說明理由.

查看答案和解析>>

同步練習冊答案