已知:正方形ABCD中,點(diǎn)F為邊CD的中點(diǎn),DF=3,連接AF并延長(zhǎng),與BC的延長(zhǎng)線交于G點(diǎn).
(1)連接BF(如圖1),在不添加任何輔助線的條件下,請(qǐng)找出所有相似的三角形,并選擇其中的一對(duì)加以證明;
(2)E是邊CB上一動(dòng)點(diǎn),連接EF,M為AD上任意一點(diǎn),且MF⊥EF,連接ME(如圖2).若△MEF與△ADF相似,求EB的長(zhǎng).

【答案】分析:(1)首先由已知得到三個(gè)全等三角形,△ADF≌△BCF≌△CFG,然后已知圖形得△CFG∽△ABG,所以寫出所有相似的三角形為:△CFG∽△BFC∽△ADF∽△ABG.
(2)先由△ADF與△MEF相似,再延長(zhǎng)MF,與BG交于N點(diǎn)推出∴△MDF≌△CFN,MF=FN,△MFE≌△NFE,最后證得△DAF∽△CFE,求出EB的長(zhǎng).
解答:解:(1)由已知正方形ABCD和點(diǎn)F為邊CD的中點(diǎn),得:
AD=BC,DF=CF,
∠ADF=∠BCF=90°,∠CFG=∠DFA(對(duì)頂角),∠FCG=∠FDA=90°,
∴△ADF≌△BCF≌△CFG
所以寫出所有相似的三角形為:△CFG∽△BFC∽△ADF∽△ABG,
選:△CFG和△ABG.
∵四邊形ABCD是正方形,
∴CD∥AB
∴∠ABG=∠FCG,∠BAG=∠CFG
∴△CFG∽△ABG;

(2)若△ADF與△MEF相似
∵∠ADF=∠EFM=90°
(Ⅰ)∠DAF=∠MEF
延長(zhǎng)MF,與BG交于N點(diǎn)
∵F為CD中點(diǎn)
∴DF=CF
∵∠D=∠DCN=90°,∠DFM=∠CFN
∴△MDF≌△CFN,MF=FN,
∵∠MFE=∠NFE=90°,F(xiàn)B=FB
∴△MFE≌△NFE,∠MEF=∠FEN=∠DAF
又∵AD∥BG
∴∠DAF=∠G
∴∠G=∠FEG=∠MEF
∴EF=FG(7分)
∴E與B重合,即EB=0,
(Ⅱ)∠EMF=∠DAF
∵∠DAF=∠G
∴∠EMF=∠G
∴M與A點(diǎn)重合
易證△DAF∽△CFE,

代入解得CE=
∴BE=6-=,
綜上所述,當(dāng)BE=0或時(shí),△MEF與△ADF相似.
點(diǎn)評(píng):此題考查的知識(shí)點(diǎn)是相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì)及正方形的性質(zhì).解答此題的關(guān)鍵是運(yùn)用它們的判定和性質(zhì)作答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:正方形ABCD邊長(zhǎng)為1,E、F、G、H分別為各邊上的點(diǎn),且AE=BF=CG=DH,設(shè)小正方形EFGH的面積為s,AE為x,則s關(guān)于x的函數(shù)圖象大致是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、(1)如圖,已知在正方形ABCD中,M是AB的中點(diǎn),E是AB延長(zhǎng)線上一點(diǎn),MN⊥DM且交∠CBE的平分線于N.試判定線段MD與MN的大小關(guān)系;
(2)若將上述條件中的“M是AB的中點(diǎn)”改為“M是AB上或AB延長(zhǎng)線上任意一點(diǎn)”,其余條件不變.試問(1)中的結(jié)論還成立嗎?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:正方形ABCD邊長(zhǎng)為4cm,E,F(xiàn)分別為CD,BC的中點(diǎn),動(dòng)點(diǎn)P在線段AB上從B?A以2cm/精英家教網(wǎng)s的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在線段FC上從F?C以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)G在PC上,且∠EGC=∠EQC,連接PD.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求證:△CQE∽△APD;
(2)問:在運(yùn)動(dòng)過程中CG•CP的值是否發(fā)生改變?如果不變,請(qǐng)求這個(gè)值;若改變,請(qǐng)說明理由;
(3)當(dāng)t為何值時(shí),△CGE為等腰三角形并求出此時(shí)△CGE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,已知在正方形ABCD中,P是BC上的一點(diǎn),且AP=DP.求證:P是BC中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=
6
.下列結(jié)論:
①△APD≌△AEB﹔②點(diǎn)B到直線AE的距離為
3
﹔③EB⊥ED﹔④S△APD+S△APB=0.5+
2

其中正確結(jié)論的序號(hào)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案