如圖,已知AB為⊙O的直徑,PA與⊙O相切與點(diǎn)A,線段OP與弦AC垂直并相交于點(diǎn)D,OP與⊙O相交于點(diǎn)E,連接BC.
(1)求證:△PAD△ABC;
(2)若PA=10,AD=6,求AB和PE的長(zhǎng).
(1)證明:∵PA是⊙O的切線,AB是直徑,
∴∠PAO=90°,∠C=90°,
∴∠PAC+∠BAC=90°,∠B+∠BAC=90°,
∴∠PAC=∠B,
又∵OP⊥AC,
∴∠ADP=∠C=90°,
∴△PAD△ABC;

(2)∵∠PAO=90°,PA=10,AD=6,
∴PD=
PA2-AD2
=8,
∵OD⊥AC,
∴AD=DC=6,
∴AC=12,
∵△PAD△ABC,
AP
AB
=
PD
AC
,
10
AB
=
8
12
,
∴AB=15,
∴OE=
1
2
AB=
15
2
,
∵OP=
AO2+AP2
=
25
2

∴PE=OP-OE=
25
2
-
15
2
=5.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙B的半徑r=1,PA、PO是⊙B的切線,A、O是切點(diǎn).過點(diǎn)A作弦ACPO,連接CO、AO(如圖1).
(1)問△PAO與△OAC有什么關(guān)系?證明你的結(jié)論;
(2)把整個(gè)圖形放在直角坐標(biāo)系中(如圖2),使OP與x軸重合,B點(diǎn)在y軸上.
設(shè)P(t,0),P點(diǎn)在x軸的正半軸上運(yùn)動(dòng)時(shí),四邊形PACO的形狀隨之變化,當(dāng)這圖形滿足什么條件時(shí),四邊形PACO是菱形?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,以BC上一點(diǎn)O為圓心,以O(shè)B為半徑的圓交AB于點(diǎn)M,交BC于點(diǎn)N.
(1)求證:BA•BM=BC•BN;
(2)如果CM是⊙O的切線,N為OC的中點(diǎn),當(dāng)AC=3時(shí),求AB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2下下5•三明)人圖,已知⊙O1和⊙O2相交于A、B兩點(diǎn),直線二D、EF過點(diǎn)B交⊙O1于點(diǎn)二、E,交⊙O2于點(diǎn)D、F.
(1)求證:△A二D△AEF;
(2)若AB⊥二D,且在△AEF中,AF、AE、EF的長(zhǎng)分別為3、o、5,求證:A二是⊙O2的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,AD是圓O的直徑,BC切圓O于點(diǎn)D,AB、AC與圓O相交于點(diǎn)E、F.

(1)求證:AE•AB=AF•AC;
(2)如果將圖1中的直線BC向上平移與圓O相交得圖2,或向下平移得圖3,此時(shí),AE•AB=AF•AC是否仍成立?若成立,請(qǐng)證明,若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,AB是⊙O的直徑,AD是弦,OC垂直AD于F交⊙O于E,連接DE、BE,且∠C=∠BED.
(1)求證:AC是⊙O的切線;
(2)若OA=10,AD=16,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,△ABC內(nèi)接于⊙O,AB=AC,∠BOC=100°,MN是過B點(diǎn)而垂直于OB的直線,則∠ABM=______度,∠CBN=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA、PB是⊙O的切線,點(diǎn)C在
AB
上,且∠ACB=130°,則∠P=______;若點(diǎn)D也在
AB
上,且MN切⊙O于點(diǎn)D,且與PA、PB分別交于N、M兩點(diǎn),若PA=10cm,則△PMN的周長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,線段AB經(jīng)過圓心O,交⊙O于點(diǎn)A、C,∠BAD=∠B=30°,邊BD交⊙O于點(diǎn)D.
(1)求證:BD是⊙O的切線;
(2)若AB=6,求線段DB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案