【題目】關(guān)于二次函數(shù),以下結(jié)論:①拋物線交軸有兩個不同的交點;②不論取何值,拋物線總是經(jīng)過一個定點;③設拋物線交軸于、兩點,若,則;④拋物線的頂點在圖象上;⑤拋物線交軸于點,若是等腰三角形,則,.其中正確的序號是(

A. ①②⑤ B. ②③④ C. ①④⑤ D. ②④

【答案】D

【解析】

,利用該一元二次方程的△即可判斷①的正誤;當x=1時,方程中變化的參數(shù)k會被“抵消”,則拋物線總是會經(jīng)過一個定點,由此判斷;可直接代入k=4來驗證③;求出頂點坐標,然后代入,來判斷④;可采取直接代入進行驗證選擇較容易的01先代入,當k=1時,不是等腰三角形.

解:△=k2-4k+4=(k-2)2≥0,當k=2時,拋物線與x軸只有1個交點,錯誤;

x=1時,y=1-k+k-1=0,即拋物線過定點(1,0),②正確;

k=4時,y=x2-4x+3,則拋物線與x軸的交點為:x2-4x+3=0,解得x1=3,x2=1,則AB=3-1=2,故錯誤;

二次函數(shù)的頂點為(,),代入進行驗證:

x=時,,故正確;

k=1時,,解得拋物線與x軸的兩個交點為:(0,0)、(1,0),此時不是等腰三角形,故錯誤.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知y33x+2正比例,且x=2時,y=5

1)求yx之間的函數(shù)關(guān)系式,并指出它是什么函數(shù);

2)點(4,6)是否在這個函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB、BCAC三邊的長分別為, ,求這個三角形的面積.小明同學在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點ABC(即ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求ABC的高,而借用網(wǎng)格就能計算出它的面積.

1ABC的面積為      

2)若DEF的三邊DE、EF、DF長分別為 , ,請在圖2的正方形網(wǎng)格中畫出相應的DEF,并求出DEF的面積為      

3)在ABC中,AB=2,AC=4,BC=2,以AB為邊向ABC外作ABDDCAB異側(cè)),使ABD為等腰直角三角形,則線段CD的長為      

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新建成學校舉行美化綠化校園活動,九年級計劃購買種花木共100棵綠化操場,其中木每棵50元花木每棵100元.

(1)若購進,花木剛好用去8000元,則購買了種花木各多少棵?

(2)如果購買花木的數(shù)量不少于花木的數(shù)量,請設計一種購買方案使所需總費用最低,并求出該購買方案所需總費用?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等邊三角形ABC的邊長為4 cm,點D從點C出發(fā)沿CA向點A運動,點E從點B出發(fā)沿AB的延長線BF向右運動,已知點D,E都以每秒 cm的速度同時開始運動,運動過程中DEBC相交于點P.

(1).當點D,E運動多少秒后,△ADE為直角三角形?

(2)在點D,E運動時,線段PD與線段PE相等嗎?如果相等,予以證明;如不相等,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為二次函數(shù)的圖象,則下列說法:①;;;,其中正確的個數(shù)為(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,∠ECF=∠BCD90°,CECF5,BC7BD平分∠ABC,EBCD內(nèi)一點,F是四邊形ABCD外一點.(E可以在BCD的邊上)

1)求證:DCBC;

2)當∠BEC135°,設BEaDEb,求ab滿足的關(guān)系式;

3)當E落在線段BD上時,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為緩解交通擁堵,某區(qū)擬計劃修建一地下通道,該通道一部分的截面如圖所示(圖中地面AD與通道BC平行,通道水平寬度BC8米,∠BCD=135°,通道斜面CD的長為6米,通道斜面AB的坡度i=1:

(1)求通道斜面AB的長;

(2)為增加市民行走的舒適度,擬將設計圖中的通道斜面CD的坡度變緩,修改后的通道斜面DE的坡角為30°,求此時BE的長.

(答案均精確到0.1米,參考數(shù)據(jù):≈1.41,≈2.24,≈2.45)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數(shù)根,下列判斷正確的是( 。

A. 1一定不是關(guān)于x的方程x2+bx+a=0的根

B. 0一定不是關(guān)于x的方程x2+bx+a=0的根

C. 1和﹣1都是關(guān)于x的方程x2+bx+a=0的根

D. 1和﹣1不都是關(guān)于x的方程x2+bx+a=0的根

查看答案和解析>>

同步練習冊答案