【題目】如圖1,某社會實踐活動小組實地測量兩岸互相平行的一段河的寬度,在河的南岸邊點A處,測得河的北岸邊點B在其北偏東45°方向,然后向西走60m到達C點,測得點B在點C的北偏東60°方向,如圖2.

(1)求∠CBA的度數(shù).
(2)求出這段河的寬(結(jié)果精確到1m,備用數(shù)據(jù) ≈1.41, ≈1.73).

【答案】
(1)解:由題意得,∠BAD=45°,∠BCA=30°,

∴∠CBA=∠BAD﹣∠BCA=15°


(2)解:作BD⊥CA交CA的延長線于D,

設(shè)BD=xm,

∵∠BCA=30°,

∴CD= = x,

∵∠BAD=45°,

∴AD=BD=x,

x﹣x=60,

解得x= ≈82,

答:這段河的寬約為82m.


【解析】本題考查的是解直角三角形的應(yīng)用﹣方向角問題,正確標(biāo)注方向角、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.(1)根據(jù)三角形的外角的性質(zhì)、結(jié)合題意計算即可;(2)作BD⊥CA交CA的延長線于D,設(shè)BD=xm,根據(jù)正切的定義用x表示出CD、AD,根據(jù)題意列出方程,解方程即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一小球從斜坡O點處拋出,球的拋出路線可以用二次函數(shù)y=﹣x2+4x刻畫,斜坡可以用一次函數(shù)y= x刻畫.

(1)請用配方法求二次函數(shù)圖象的最高點P的坐標(biāo);
(2)小球的落點是A,求點A的坐標(biāo);
(3)連接拋物線的最高點P與點O、A得△POA,求△POA的面積;
(4)在OA上方的拋物線上存在一點M(M與P不重合),△MOA的面積等于△POA的面積.請直接寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=8cm,BC=16cm,點P從點A出發(fā)沿AB邊想向點B以2cm/s的速度移動,點Q從點B出發(fā)沿BC邊向點C以4cm/s的速度移動,如果P、Q同時出發(fā),經(jīng)過幾秒后△PBQ和△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館有50個房間供游客居住,當(dāng)每個房間每天的定價為180元時,房間會全部住滿;當(dāng)每個房間每天的定價每增加10元時,就會有一個房間空閑.如果游客居住房間,賓館需對每個房間每天支出20元的各種費用.
(1)若每個房間定價增加40元,則這個賓館這一天的利潤為多少元?
(2)若賓館某一天獲利10640元,則房價定為多少元?
(3)房價定為多少時,賓館的利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l:y=﹣x,雙曲線y= ,在l上取一點A(a,﹣a)(a>0),過A作x軸的垂線交雙曲線于點B,過B作y軸的垂線交l于點C,過C作x軸的垂線交雙曲線于點D,過D作y軸的垂線交l于點E,此時E與A重合,并得到一個正方形ABCD,若原點O在正方形ABCD的對角線上且分這條對角線為1:2的兩條線段,則a的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,可以看作是中心對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在⊙O中,AB為直徑,C為⊙O上一點.

(1)如圖1.過點C作⊙O的切線,與AB的延長線相交于點P,若∠CAB=27°,求∠P的大;
(2)如圖2,D為 上一點,且OD經(jīng)過AC的中點E,連接DC并延長,與AB的延長線相交于點P,若∠CAB=10°,求∠P的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AB是⊙O的直徑,E是AB延長線上一點,EC切⊙O于點C,OP⊥AO交AC于點P,交EC的延長線于點D.

(1)求證:△PCD是等腰三角形;
(2)CG⊥AB于H點,交⊙O于G點,過B點作BF∥EC,交⊙O于點F,交CG于Q點,連接AF,如圖2,若sinE= ,CQ=5,求AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在以BC為直徑的⊙O內(nèi),且AB=AC,以點A為圓心,AC長為半徑作弧,得到扇形ABC,剪下扇形ABC圍成一個圓錐(AB和AC重合),若∠BAC=120°,BC=2 ,則這個圓錐底面圓的半徑是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案