(2002•煙臺)如圖,某港口有一燈塔A,燈塔A的正東有B、C兩燈塔,以BC為直徑的半圓區(qū)域內(nèi)有若干暗礁,BC=18海里,一船在M處測得燈塔A、C分別在船的南偏西60°和南偏西15°方向,船沿MA方向行駛6海里恰好處在燈塔C的正北方向N處.
(1)求CN的長(精確到0.1海里);
(2)若船繼續(xù)沿MA方向朝A行駛,是否有觸礁的危險?
(參考數(shù)值:=1.414,=1.732,sin15°=0.2588,cos15°=0.9658,tan15°=0.2680,cot15°=3.732)

【答案】分析:(1)設(shè)BC的中點是O,作ND⊥CM,OE⊥AM.求CN的長,可以在直角△NCD中利用三角函數(shù)求解.
(2)判斷是否有觸礁危險可以計算出OE的長,然后比較與9海里的大小關(guān)系就可以.
解答:解:(1)設(shè)BC的中點為O,作ND⊥CM,OE⊥AM,垂足分別為D、E.
在直角△MND中,ND=MN•sin∠NMD=6•sin45°=3(海里),
在直角△NCD中,CN=≈16.4海里.

(2)在直角△ANC中,AC=CN•cotA=16.4•cot30°=16.4×≈28.4海里,
∴AO=AC-BC=28.4-×18≈19.4(海里),
∴OE=AO≈×19.4=9.7(海里),
∵9.7>9,
所以船繼續(xù)沿MA方向朝A行駛,沒有觸礁的危險.
點評:解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2002•煙臺)如圖,過點C的直線l∥x軸,拋物線y=ax2+bx+c(a<0)過A(-1,0),C(0,1)兩點,且截直線l所得線段CD=
(1)求該拋物線的解析式;
(2)若點M(m,t)(m<0,t>0)在拋物線上,MN∥x軸,且與該拋物線的另一交點為N,問:是否存在實數(shù)t,使得MN=2AO?如果存在,求出t的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(03)(解析版) 題型:解答題

(2002•煙臺)如圖,點A、B在反比例函數(shù)的圖象上,且點A、B的橫坐標(biāo)分別為a、2a(a>0),AC⊥x軸,垂足為點C,且△AOC的面積為2.
(1)求該反比例函數(shù)的解析式;
(2)若點(-a,y1),(-2a,y2)在該反比例函數(shù)的圖象上,試比較y1與y2的大小;
(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年山東省煙臺市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•煙臺)如圖,過點C的直線l∥x軸,拋物線y=ax2+bx+c(a<0)過A(-1,0),C(0,1)兩點,且截直線l所得線段CD=
(1)求該拋物線的解析式;
(2)若點M(m,t)(m<0,t>0)在拋物線上,MN∥x軸,且與該拋物線的另一交點為N,問:是否存在實數(shù)t,使得MN=2AO?如果存在,求出t的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年山東省煙臺市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•煙臺)如圖,點A、B在反比例函數(shù)的圖象上,且點A、B的橫坐標(biāo)分別為a、2a(a>0),AC⊥x軸,垂足為點C,且△AOC的面積為2.
(1)求該反比例函數(shù)的解析式;
(2)若點(-a,y1),(-2a,y2)在該反比例函數(shù)的圖象上,試比較y1與y2的大;
(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年山東省煙臺市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•煙臺)如圖所示,直線l的解析式是( )

A.y=x+2
B.y=-2x+2
C.y=x-2
D.y=-x-2

查看答案和解析>>

同步練習(xí)冊答案