已知:如圖,⊙O1與⊙O2相交于A、B兩點(diǎn),過(guò)A的直線交⊙O1于C,交⊙O2于D,過(guò)B的直線交⊙O1于E,交⊙O2于F,且CD∥EF.
求證:CE=DF.

【答案】分析:連接AB,根據(jù)圓的內(nèi)接四邊形的性質(zhì),易證得∠F+∠E=180°,因此CE∥DF,即四邊形CDFE是平行四邊形;由平行四邊形的性質(zhì)即可證得CE=DF.
解答:證明:連接AB;
∵∠CAB=∠F,CD∥EF;
∴∠C+∠E=180°(兩直線平行,同旁?xún)?nèi)角互補(bǔ));
∵∠CAB+∠E=180°,
∴∠C=∠CAB=∠F,
∴∠F+∠E=180°;
∴四邊形CDFE是平行四邊形;
∴CE=DF.
點(diǎn)評(píng):主要考查平行四邊形的判定和圓內(nèi)接四邊形的性質(zhì).要注意圓的內(nèi)接四邊形的性質(zhì)有:(1)外角等于內(nèi)對(duì)角;(2)對(duì)角互補(bǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知;如圖,⊙O1與⊙O2內(nèi)切于點(diǎn)A,⊙O2的直徑AC交⊙O1于點(diǎn)B,⊙O2的弦FC切⊙精英家教網(wǎng)O1于點(diǎn)D,AD的延長(zhǎng)線交⊙O2于點(diǎn)E,連接AF、EF、BD.
(1)求證:AC•AF=AD•AE;
(2)若O1O2=9,cos∠BAD=
23
,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,⊙O1與⊙O2外切于C點(diǎn),AB一條外公切線,A、B分別為切點(diǎn),連接AC、BC.設(shè)⊙O1的半徑為R,⊙O2的半徑為r,若tan∠ABC=
2
,則
R
r
的值為( 。
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1998•南京)已知,如圖,⊙O1與⊙O2相交,點(diǎn)P是其中一個(gè)交點(diǎn),點(diǎn)A在⊙O2上,AP的延長(zhǎng)線交⊙O1于點(diǎn)B,AO2的延長(zhǎng)線交⊙O1于點(diǎn)C、D,交⊙O2于點(diǎn)E,連接PC、PE、PD,且
PC
PD
=
CE
DE
,過(guò)A作⊙O1的切線AQ,切點(diǎn)為Q.求證:
(1)∠CPE=∠DPE;
(2)AQ2-AP2=PC•PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,⊙O1與⊙O2外切于A點(diǎn),直線l與⊙O1、⊙O2分別切于B,C點(diǎn),若⊙O1的半徑r1=2cm,⊙O2的半徑r2=3cm.求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,⊙O1與⊙O2相交于A、B,若兩圓半徑分別為12和5,O1O2=13,則AB=
120
13
120
13

查看答案和解析>>

同步練習(xí)冊(cè)答案