【題目】等腰△ABC的直角邊AB=BC=10cm,點P、Q分別從A、C兩點同時出發(fā),均以1cm/秒的相同速度作直線運動,已知P沿射線AB運動,Q沿邊BC的延長線運動,PQ與直線AC相交于點D.設(shè)P點運動時間為t,△PCQ的面積為S.
(1)求出S關(guān)于t的函數(shù)關(guān)系式;
(2)當(dāng)點P運動幾秒時,S△PCQ=S△ABC?
(3)作PE⊥AC于點E,當(dāng)點P、Q運動時,線段DE的長度是否改變?證明你的結(jié)論.
【答案】(1)S=(t<10),(t>10); (2);(3)不變,理由參見解析.
【解析】
試題由題可以看出P沿AB向右運動,Q沿BC向上運動,且速度都為1cm/s,S=QC×PB,所以求出QC、PB與t的關(guān)系式就可得出S與t的關(guān)系,另外應(yīng)注意P點的運動軌跡,它不僅在B點左側(cè)運動,達(dá)到一定時間后會運動到右側(cè),所以一些問題可能會有兩種可能出現(xiàn)的情況,這時我們應(yīng)分類回答.
試題解析:(1)當(dāng)t<10秒時,P在線段AB上,此時CQ=t,PB=10-t
∴s=×t×(10t)=(10tt2)
當(dāng)t>10秒時,P在線段AB得延長線上,此時CQ=t,PB=t-10
∴s=×t×(t10)=(t210t)
(2)∵S△ABC=ABBC=50
∴當(dāng)t<10秒時,S△PCQ=(10tt2)=50
整理得t2-10t+100=0無解
當(dāng)t>10秒時,S△PCQ=(t210t)="50"
整理得t2-10t-100=0解得x=5±5(舍去負(fù)值)
∴當(dāng)點P運動5+5秒時,S△PCQ=S△ABC.
(3)當(dāng)點P、Q運動時,線段DE的長度不會改變
證明:過Q作QM⊥AC,交直線AC于點M
易證△APE≌△QCM,
∴AE=PE=CM=QM=t,
∴四邊形PEQM是平行四邊形,且DE是對角線EM的一半
又∵EM=AC=10
∴DE=5
∴當(dāng)點P、Q運動時,線段DE的長度不會改變
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級(1)班班主任對本班學(xué)生進行了“我最喜歡的課外活動”的調(diào)查,并將調(diào)查結(jié)果分為書法和繪畫類記為A;音樂類記為B;球類記為C;其他類記為D.根據(jù)調(diào)查結(jié)果發(fā)現(xiàn)該班每個學(xué)生都進行了等級且只登記了一種自己最喜歡的課外活動.班主任根據(jù)調(diào)查情況把學(xué)生都進行了歸類,并制作了如下兩幅統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:
(1)七年級(1)班學(xué)生總?cè)藬?shù)為_______人,扇形統(tǒng)計圖中D類所對應(yīng)扇形的圓心角為_____度,請補全條形統(tǒng)計圖;
(2)學(xué)校將舉行書法和繪畫比賽,每班需派兩名學(xué)生參加,A類4名學(xué)生中有兩名學(xué)生擅長書法,另兩名擅長繪畫.班主任現(xiàn)從A類4名學(xué)生中隨機抽取兩名學(xué)生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學(xué)生恰好是一名擅長書法,另一名擅長繪畫的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】文化是一個國家、一個民族的靈魂,近年來,央視推出《中國詩詞大會》、《中國成語大會》、《朗讀者》、《經(jīng)曲詠流傳》等一系列文化欄目.為了解學(xué)生對這些欄目的喜愛情況,某學(xué)校組織學(xué)生會成員隨機抽取了部分學(xué)生進行調(diào)查,被調(diào)查的學(xué)生必須從《經(jīng)曲詠流傳》(記為A)、《中國詩詞大會》(記為B)、《中國成語大會》(記為C)、《朗讀者》(記為D)中選擇自己最喜愛的一個欄目,也可以寫出一個自己喜愛的其他文化欄目(記為E).根據(jù)調(diào)查結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中信息解答下列問題:
(1)在這項調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)將條形統(tǒng)計圖補充完整,并求出扇形統(tǒng)計圖中“B”所在扇形圓心角的度數(shù);
(3)若選擇“E”的學(xué)生中有2名女生,其余為男生,現(xiàn)從選擇“E”的學(xué)生中隨機選出兩名學(xué)生參加座談,請用列表法或畫樹狀圖的方法求出剛好選到同性別學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)如圖,在平行四邊形ABCD中,點A、B、C的坐標(biāo)分別是(1,0)、(3,1)、(3,3),雙曲線y=(k≠0,x>0)過點D.
(1)求此雙曲線的解析式;
(2)作直線AC交y軸于點E,連結(jié)DE,求△ CDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2-2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A的坐標(biāo)為(4,0).
(1)求該拋物線的解析式;
(2)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ,當(dāng)△CQE的面積為3時,求點Q的坐標(biāo);
(3)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標(biāo)為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在不透明的袋子中有黑棋子10枚和白棋子若干(它們除顏色外都相同),現(xiàn)隨機從中摸出10枚記下顏色后放回,這樣連續(xù)做了10次,記錄了如下的數(shù)據(jù):
次數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
黑棋數(shù) | 2 | 5 | 1 | 5 | 4 | 7 | 4 | 3 | 3 | 6 |
根據(jù)以上數(shù)據(jù),解答下列問題:
(I)直接填空:第10次摸棋子摸到黑棋子的頻率為 ;
(Ⅱ)試估算袋中的白棋子數(shù)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,分別是兩棵樹及其影子的情形
(1)哪個圖反映了陽光下的情形?哪個圖反映了路燈下的情形.
(2)請畫出圖中表示小麗影長的線段.
(3)陽光下小麗影子長為1.20m樹的影子長為2.40m,小麗身高1.88m,求樹高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線分別與x軸交于A,B兩點,與y軸交于C點,直線EF垂直平分線段BC,分別交BC于點E,y軸于點F,交x軸于D.
判定的形狀;
在線段BC下方的拋物線上有一點P,當(dāng)面積最大時,求點P的坐標(biāo)及面積的最大值;
如圖,過點E作軸于點H,將繞點E逆時針旋轉(zhuǎn)一個角度,的兩邊分別交線段BO,CO于點T,點K,當(dāng)為等腰三角形時,求此時KT的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(﹣1,0).
(1)求拋物線的解析式及頂點D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點M是x軸上的一個動點,當(dāng)△DCM的周長最小時,求點M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com