【題目】已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點(diǎn)DE分別是邊AB、BC的中點(diǎn),點(diǎn)FG是邊AC的三等分點(diǎn),DF、EG的延長(zhǎng)線(xiàn)相交于點(diǎn)H,連接HA、HC

(1)求證:四邊形FBGH是菱形;

(2)求證:四邊形ABCH是正方形.

【答案】1)見(jiàn)解析 2)見(jiàn)解析

【解析】

1)由三角形中位線(xiàn)知識(shí)可得DFBG,GHBF,根據(jù)菱形的判定的判定可得四邊形FBGH是菱形;
2)連結(jié)BH,交AC于點(diǎn)O,利用平行四邊形的對(duì)角線(xiàn)互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根據(jù)對(duì)角線(xiàn)互相垂直平分的平行四邊形得證四邊形ABCH是菱形,再根據(jù)一組鄰邊相等的菱形即可求解.

1)∵點(diǎn)F、G是邊AC的三等分點(diǎn),
AF=FG=GC
又∵點(diǎn)D是邊AB的中點(diǎn),
DHBG
同理:EHBF
∴四邊形FBGH是平行四邊形,
連結(jié)BH,交AC于點(diǎn)O,
OF=OG
AO=CO,
AB=BC,
BHFG,
∴四邊形FBGH是菱形;
2)∵四邊形FBGH是平行四邊形,
BO=HO,FO=GO
又∵AF=FG=GC,
AF+FO=GC+GO,即:AO=CO
∴四邊形ABCH是平行四邊形.
ACBH,AB=BC,
∴四邊形ABCH是正方形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,DEF分別為△ABCACABBC上的點(diǎn),∠A=∠1=∠C,DE=DF.下面的結(jié)論一定成立的是(

A. AE=FC B. AE=DE C. AE+FC=AC D. AD+FC=AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a是最大的負(fù)整數(shù),b-5的相反數(shù),c=,且a、b、c分別是點(diǎn)A、B、C在數(shù)軸上對(duì)應(yīng)的數(shù).若動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)從點(diǎn)B出發(fā)也沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒3個(gè)單位長(zhǎng)度,點(diǎn)Q的速度是每秒1個(gè)單位長(zhǎng)度.

1)求a、bc的值;

2P、Q同時(shí)出發(fā),求運(yùn)動(dòng)幾秒后,點(diǎn)P可以追上點(diǎn)Q

3)在(2)的條件下,P、Q出發(fā)的同時(shí),動(dòng)點(diǎn)M從點(diǎn)C出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),速度為每秒6個(gè)單位長(zhǎng)度,點(diǎn)M追上點(diǎn)Q后立即返回沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),追上后點(diǎn)M再運(yùn)動(dòng)幾秒,MQ的距離等于MP距離的兩倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算題:

1)(-14)-(-15 2 23×(1)×0.5.

3×(5)(用簡(jiǎn)便方法計(jì)算) 4 1×(-48

5)(-10÷×2 +(-43; 6)-12(×[2(3)2]

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市水果批發(fā)部門(mén)欲將 A 市的一批水果運(yùn)往本市銷(xiāo)售,有火車(chē)和汽車(chē)兩種運(yùn)輸方式,運(yùn)輸過(guò)程中的損耗均為 200 / 時(shí).其它主要參考數(shù)據(jù)如下:

運(yùn)輸工具

途中平均速度(千米/ 時(shí))

運(yùn)費(fèi)(元/ 千米)

裝卸費(fèi)用(元)

火車(chē)

100

15

2000

汽車(chē)

80

20

900

運(yùn)輸過(guò)程中,火車(chē)因多次臨時(shí)停車(chē),全程在路上耽誤 2 小時(shí) 45 分鐘,火車(chē)的總支出費(fèi)用與汽車(chē)的總支出費(fèi)用相同,請(qǐng)問(wèn)某市與本地的路程是多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

1)如果點(diǎn)A表示的數(shù)-1,將點(diǎn)A向右移動(dòng)4個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是 ,AB兩點(diǎn)間的距離是

2)如果點(diǎn)A表示的數(shù)2,將點(diǎn)A向左移動(dòng)6個(gè)單位長(zhǎng)度,再向右移動(dòng)3個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是 ,AB兩點(diǎn)間的距離是

3)如果點(diǎn)A表示的數(shù)m,將點(diǎn)A向右移動(dòng)n個(gè)單位長(zhǎng)度,再向左移動(dòng)p個(gè)單位長(zhǎng)度,那么請(qǐng)你猜想終點(diǎn)B表示的數(shù)是 A、B兩點(diǎn)間的距離是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,拋物線(xiàn)x軸相交于點(diǎn)A,B,與y軸相交于點(diǎn)C. 已知A,C兩點(diǎn)的坐標(biāo)分別為A(-4,0), C(0,4).

(1)求拋物線(xiàn)的表達(dá)式;

(2)如果點(diǎn)P,Q在拋物線(xiàn)上(P點(diǎn)在對(duì)稱(chēng)軸左邊),且PQAO,PQ=2AO,求P,Q的坐標(biāo);

(3)動(dòng)點(diǎn)M在直線(xiàn)y=x+4上,且ABCCOM相似,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OABCAC的中點(diǎn),ADBCBO的延長(zhǎng)線(xiàn)于點(diǎn)D,連接DCDB平分∠ADC,作DEBC,垂足為E

1)求證:四邊形ABCD為菱形;

2)若BD8,AC6,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某景區(qū)一電瓶小客車(chē)接到任務(wù)從景區(qū)大門(mén)出發(fā),向東走2千米到達(dá)A景區(qū),繼續(xù)向東走2.5千米到達(dá)B景區(qū),然后又回頭向西走8.5千米到達(dá)C景區(qū),最后回到景區(qū)大門(mén).

(1)以景區(qū)大門(mén)為原點(diǎn),向東為正方向,以1個(gè)單位長(zhǎng)表示1千米,建立如圖所示的數(shù)軸,請(qǐng)?jiān)跀?shù)軸上表示出上述A、B、C三個(gè)景區(qū)的位置.

(2)A景區(qū)與C景區(qū)之間的距離是多少?

(3)若電瓶車(chē)充足一次電能行走15千米,則該電瓶車(chē)能否在一開(kāi)始充足電而途中不充電的情況下完成此次任務(wù)?請(qǐng)計(jì)算說(shuō)明.

查看答案和解析>>

同步練習(xí)冊(cè)答案