已知如圖在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對角線,AG∥BD交CB的延長線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論。
(1)證明:∵四邊形ABCD是平行四邊形,
∴∠4=∠C,AD=CB,AB=CD.
∵點(diǎn)E、F分別是AB、CD的中點(diǎn),
∴AE=AB,CF=CD.
∴AE=CF.
∴△ADE≌△CBF(SAS).
(2)解:當(dāng)四邊形BEDF是菱形時(shí),四邊形AGBD是矩形.
證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC.
∵AG∥BD,
∴四邊形AGBD是平行四邊形.
∵四邊形BEDF是菱形,
∴DE=BE.
∵AE=BE,
∴AE=BE=DE.
∴∠1=∠2,∠3=∠4.
∵∠1+∠2+∠3+∠4=180°,
∴2∠2+2∠3=180°.
∴∠2+∠3=90°.
即∠ADB=90°.
∴四邊形AGBD是矩形.
【解析】(1)在證明全等時(shí)常根據(jù)已知條件,分析還缺什么條件,然后用(SAS,ASA,SSS)來證明全等;
(2)先由菱形的性質(zhì)得出AE=BE=DE,再通過角之間的關(guān)系求出∠2+∠3=90°即∠ADB=90°,所以判定四邊形AGBD是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆江蘇省灌云縣穆圩中學(xué)中考模擬數(shù)學(xué)試卷(帶解析) 題型:解答題
已知如圖在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對角線,AG∥BD交CB的延長線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年山東青島市嶗山區(qū)九年級(jí)第一學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
已知,如圖,在平行四邊形ABCD中,∠ABC的平分線與AD相交于點(diǎn)P,下列說法中正確的是( )
①△APB是等腰三角形 ②∠ABP+∠BPD=180°③PD+CD=BC ④
A. ①②④ B. ①②③ C. ①③④ D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com