精英家教網 > 初中數學 > 題目詳情
(2000•海南)如圖,CB是半圓的直徑,AC與半圓相切于C點,AB與半圓相交于D點,在AC上任取一點E,連接BE交半圓于F點.求證:AB•BD=EB•BF.

【答案】分析:本題解法較多,提供兩種作為參考;
(1)連接CD、CF;由圓周角定理,易知CF⊥BE,CD⊥AB;在Rt△CBE、Rt△CBA中,由射影定理可知:AB•BD及BE•BF正好都等于BC2,由此得解.
(2)將所求的乘積式化為比例式,然后證線段所在的三角形相似,即連接DF、CD,證△BDF∽△BEA.
解答:證明:證法一:連接CD、CF;
∵BC是直徑,
∴∠CDB=90°,∠CFB=90°;(4分)
又∵AC與圓相切于C點,CB是圓的直徑,
∴∠ACB=90°;(5分)
在Rt△ABC中,BC2=BD•BA,在Rt△EBC中,BC2=BF•BE;(7分)
∴BD•BA=BF•BE,即AB•BD=EB•BF.(8分)

證法二:連接CD、DF;(1分)
∵∠CBE=∠CBF=∠CDF,(2分)
又∵AC切⊙O于C,CB是半圓O的直徑,
∴∠ACB=∠BDC=90°;(3分)
∴∠AEB=90°+∠CBE=90°+∠CDF=∠BDF;(4分)
又∵∠DBF=∠EBA(同角)(5分)
∴△DBF∽△EBA,(6分)
∴BD:EB=BF:AB,(7分)
∴AB•BD=EB•BF.(8分)
點評:此題主要考查的是圓周角定理、切線的性質、直角三角形的性質以及相似三角形的判定和性質.
練習冊系列答案
相關習題

科目:初中數學 來源:2000年全國中考數學試題匯編《圖形認識初步》(01)(解析版) 題型:解答題

(2000•海南)如圖所示,在平面直角坐標系中,第一象限的角平分線OM與反比例函數的圖象相交于點M,已知OM的長是2
(1)求點M的坐標;
(2)求此反比例函數的關系式.

查看答案和解析>>

科目:初中數學 來源:2000年全國中考數學試題匯編《反比例函數》(01)(解析版) 題型:解答題

(2000•海南)如圖所示,在平面直角坐標系中,第一象限的角平分線OM與反比例函數的圖象相交于點M,已知OM的長是2
(1)求點M的坐標;
(2)求此反比例函數的關系式.

查看答案和解析>>

科目:初中數學 來源:2000年海南省中考數學試卷(解析版) 題型:解答題

(2000•海南)如圖所示,在平面直角坐標系中,第一象限的角平分線OM與反比例函數的圖象相交于點M,已知OM的長是2
(1)求點M的坐標;
(2)求此反比例函數的關系式.

查看答案和解析>>

科目:初中數學 來源:2000年全國中考數學試題匯編《三角形》(01)(解析版) 題型:選擇題

(2000•海南)如圖,E為矩形ABCD的邊CD上的一點,AB=AE=4,BC=2,則∠BEC是( )

A.15度
B.30度
C.60度
D.75度

查看答案和解析>>

同步練習冊答案