【題目】如圖,AE是△ACD的角平分線,B在DA延長線上,AE∥BC,F(xiàn)為BC中點(diǎn),判斷AE與AF的位置關(guān)系并證明.
【答案】AE與AF的位置關(guān)系是垂直. 證明見解析.
【解析】
由角平分線的性質(zhì)和平行線的性質(zhì)得到∠B=∠ACB,由等角對等邊,得到AB=AC,再由等腰三角形三線合一的性質(zhì)及角平分線的性質(zhì)即可得到結(jié)論.
AE與AF的位置關(guān)系是垂直.理由如下:
∵AE是△ACD的角平分線,∴∠DAE=∠CAE=∠DAC.
∵AE∥BC,∴∠DAE=∠B,∠EAC=∠ACB,∴∠B=∠ACB,∴AB=AC.
又∵F為BC中點(diǎn),∴∠BAF= ∠CAF= ∠CAB.
∵∠CAB+∠CAD=180°,∴∠CAF+∠CAE=90°,∴AE⊥AF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)P是弦BC上一動(dòng)點(diǎn)(不與B,C重合),過點(diǎn)P作PE⊥AB,垂足為E,在射線EP上取點(diǎn)D使得DC=DP,連接DC.
(1)求證:DC是⊙O的切線;
(2)若∠CBA=30°,射線EP交⊙O于點(diǎn) F,當(dāng)點(diǎn) F恰好是弧BC的中點(diǎn)時(shí),判斷以B,O,C,F(xiàn)為頂點(diǎn)的四邊形是什么特殊四邊形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=6,AD=10,點(diǎn)P是邊BC上的動(dòng)點(diǎn),現(xiàn)將紙片折疊,使點(diǎn)A與點(diǎn)P重合,折痕與矩形邊的交點(diǎn)分別為E、F,要使折痕始終與邊AB、AD有交點(diǎn),則BP的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知P、Q是△ABC的BC邊上的兩點(diǎn),且BP=AP=AQ=QC,∠PAQ=60°.
(1)求證:AB=AC;
(2)求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A城有某種農(nóng)機(jī)30臺,B城有該農(nóng)機(jī)40臺,現(xiàn)要將這些農(nóng)機(jī)全部運(yùn)往C,D兩鄉(xiāng),調(diào)運(yùn)任務(wù)承包給某運(yùn)輸公司.已知C鄉(xiāng)需要農(nóng)機(jī)34臺,D鄉(xiāng)需要農(nóng)機(jī)36臺,從A城往C,D兩鄉(xiāng)運(yùn)送農(nóng)機(jī)的費(fèi)用分別為250元/臺和200元/臺,從B城往C,D兩鄉(xiāng)運(yùn)送農(nóng)機(jī)的費(fèi)用分別為150元/臺和240元/臺.
(1)設(shè)A城運(yùn)往C鄉(xiāng)該農(nóng)機(jī)x臺,運(yùn)送全部農(nóng)機(jī)的總費(fèi)用為W元,求W關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)現(xiàn)該運(yùn)輸公司要求運(yùn)送全部農(nóng)機(jī)的總費(fèi)用不低于16460元,則有多少種不同的調(diào)運(yùn)方案?將這些方案設(shè)計(jì)出來.
(3)現(xiàn)該運(yùn)輸公司決定對A城運(yùn)往C鄉(xiāng)的農(nóng)機(jī),從運(yùn)輸費(fèi)中每臺減免a元(a≤200)作為優(yōu)惠,其他費(fèi)用不變,如何調(diào)運(yùn),使總費(fèi)用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列條件中:①∠A +∠B=∠C;②∠A:∠B:∠C=l:2:3;③∠A=90°-∠B;④∠A=∠B=∠C中,能確定△ABC是直角三角形的條件有( )
A. 1個(gè); B. 2個(gè); C. 3個(gè); D. 4個(gè);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對多項(xiàng)式(x2-4x+2)(x2-4x+6)+4進(jìn)行因式分解的過程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列問題:
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.兩數(shù)和的完全平方公式 |
D.兩數(shù)差的完全平方公式 |
(2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)若不徹底,請直接寫出因式分解的最后結(jié)果_________ .
(3)請你模仿以上方法嘗試對多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直接寫出結(jié)果:(1)-1+1=_____;(2)3-7=_____;
(3)4÷=_____;(4)-7×0.5=_____;(5)(-2)3=_____;
(6)(-1)2n=_______(n為正整數(shù));(7)4x=0的解是_____;
(8)x=4 的解是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com